IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10642-0.html
   My bibliography  Save this article

An Efficient IMEX Compact Scheme for the Coupled Time Fractional Integro-Differential Equations Arising from Option Pricing with Jumps

Author

Listed:
  • Yong Chen

    (Xihua University)

  • Liangliang Li

    (Xihua University)

Abstract

When solving time fractional partial integro-differential equations (PIDEs) using standard finite difference methods, we have to invert the dense matrices arising from the discretization of the integral terms and this causes significant computational cost. In this paper, we develop an implicit-explicit (IMEX) compact finite difference scheme to raise computational efficiency when solving the coupled time fractional PIDEs arising in option pricing with jumps. First, we propose a new IMEX scheme for temporal discretization and compact finite difference scheme for spatial discretization. Then such high-order numerical scheme is proved to be unconditionally stable in the sense of the discrete $$L^2$$ L 2 and $$L^\infty$$ L ∞ norms. Finally, ample numerical experiments are reported to test the convergence rates of the proposed numerical scheme, and show its feasibility and applicability for the option pricing problems.

Suggested Citation

  • Yong Chen & Liangliang Li, 2025. "An Efficient IMEX Compact Scheme for the Coupled Time Fractional Integro-Differential Equations Arising from Option Pricing with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2397-2422, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10642-0
    DOI: 10.1007/s10614-024-10642-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10642-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10642-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meihui Zhang & Xiangcheng Zheng, 2023. "Numerical Approximation to a Variable-Order Time-Fractional Black–Scholes Model with Applications in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1155-1175, October.
    2. Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
    3. Ionut Florescu & Ruihua Liu & Maria Cristina Mariani & Granville Sewell, 2013. "Numerical Schemes For Option Pricing In Regime-Switching Jump Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-25.
    4. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Chen, 2024. "Fast and Accurate Computation of the Regime-Switching Jump-Diffusion Option Prices Using Laplace Transform and Compact Difference with Convergence Guarantee," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 57-80, July.
    2. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    3. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    4. Anshima Singh & Sunil Kumar, 2024. "An Efficient Numerical Method Based on Exponential B-splines for a Time-Fractional Black–Scholes Equation Governing European Options," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1965-2002, October.
    5. Yan, Ruifang & He, Ying & Zuo, Qian, 2021. "A difference method with parallel nature for solving time-space fractional Black-Schole model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    7. Xubiao He & Pu Gong, 2020. "A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 999-1019, March.
    8. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    9. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    10. Yasar Bolat & Murat Gevgeşoğlu & George E. Chatzarakis, 2024. "On the Qualitative Analysis of Solutions of Two Fractional Order Fractional Differential Equations," Mathematics, MDPI, vol. 12(16), pages 1-7, August.
    11. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    12. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    13. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    14. Peiwei Cao & Xubiao He, 2024. "Machine Learning Solutions for Fast Real Estate Derivatives Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2003-2032, October.
    15. Shirzadi, Mohammad & Rostami, Mohammadreza & Dehghan, Mehdi & Li, Xiaolin, 2023. "American options pricing under regime-switching jump-diffusion models with meshfree finite point method," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Haq, Sirajul & Hussain, Manzoor, 2018. "Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 248-263.
    18. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    19. J. X. Jiang & R. H. Liu & D. Nguyen, 2016. "A Recombining Tree Method For Option Pricing With State-Dependent Switching Rates," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-26, March.
    20. Rami Ahmad El-Nabulsi & Waranont Anukool, 2025. "Qualitative financial modelling in fractal dimensions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-47, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10642-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.