Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-013-9411-x
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Fernando Perez-cruz & Julio Afonso-rodriguez & Javier Giner, 2003. "Estimating GARCH models using support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 163-172.
- Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
- Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
- Manuel Rizzo & Francesco Battaglia, 2016. "On the Choice of a Genetic Algorithm for Estimating GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 473-485, October.
- Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
- Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Shi & Wei Dai & Wen Long & Bo Li, 2021. "Deep Kernel Gaussian Process Based Financial Market Predictions," Papers 2105.12293, arXiv.org.
- Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521770415, January.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
- Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020.
"Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid,"
Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
- Lux, Marius & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid," IRTG 1792 Discussion Papers 2018-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
- Curtis Nybo, 2021. "Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks," Papers 2110.09489, arXiv.org.
- Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Support vector regression based GARCH model with application to forecasting volatility of financial returns," SFB 649 Discussion Papers 2008-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Caio Mário Mesquita & Cristiano Arbex Valle & Adriano César Machado Pereira, 2024. "Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1879-1919, May.
- Werner Kristjanpoller, 2024. "A hybrid econometrics and machine learning based modeling of realized volatility of natural gas," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-32, December.
- Bu Tian & Tianyu Yan & Hong Yin, 2025. "Forecasting the Volatility of CSI 300 Index with a Hybrid Model of LSTM and Multiple GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 1969-1999, September.
- Darrat, Ali F. & Gilley, Otis W. & Li, Bin & Wu, Yanhui, 2011. "Revisiting the risk/return relations in the Asian Pacific markets: New evidence from alternative models," Journal of Business Research, Elsevier, vol. 64(2), pages 199-206, February.
- Trong‐Nghia Nguyen & Minh‐Ngoc Tran & Robert Kohn, 2022. "Recurrent conditional heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1031-1054, August.
- Pincak, R., 2013. "The string prediction models as invariants of time series in the forex market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6414-6426.
- Zhang, Li & Wang, Lu & Nguyen, Thong Trung & Ren, Ruiyi, 2024. "Volatility forecasting of clean energy ETF using GARCH-MIDAS with neural network model," Finance Research Letters, Elsevier, vol. 70(C).
- Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
- Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
- Kumar, Satish & Rao, Amar & Dhochak, Monika, 2025. "Hybrid ML models for volatility prediction in financial risk management," International Review of Economics & Finance, Elsevier, vol. 98(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:45:y:2015:i:1:p:111-133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/kap/compec/v45y2015i1p111-133.html