IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v26y2019i4d10.1007_s10690-019-09278-0.html
   My bibliography  Save this article

A Numerical Scheme for Expectations with First Hitting Time to Smooth Boundary

Author

Listed:
  • Yuji Hishida

    (Mizuho Securities Asia Limited)

  • Yuta Ishigaki

    (COSMEDIA. CO., LTD)

  • Toshiki Okumura

    (The Dai-ichi Life Insurance Company, Limited)

Abstract

In the present paper, we propose a numerical scheme to calculate expectations with first hitting time to a given smooth boundary, in view of the application to the pricing of options with non-linear barriers. To attack the problem, we rely on the symmetrization technique in Akahori and Imamura (Quant Finance 14(7):1211–1216, 2014) and Imamura et al. (Monte Carlo Methods Appl 20(4):223–235, 2014), with some modifications. To see the effectiveness, we perform some numerical experiments.

Suggested Citation

  • Yuji Hishida & Yuta Ishigaki & Toshiki Okumura, 2019. "A Numerical Scheme for Expectations with First Hitting Time to Smooth Boundary," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 553-565, December.
  • Handle: RePEc:kap:apfinm:v:26:y:2019:i:4:d:10.1007_s10690-019-09278-0
    DOI: 10.1007/s10690-019-09278-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-019-09278-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-019-09278-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Yuuki Ida & Tsuyoshi Kinoshita, 2019. "Hyperbolic Symmetrization of Heston Type Diffusion," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 355-364, September.
    3. Jirô Akahori & Yuri Imamura, 2014. "On a symmetrization of diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1211-1216, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
    2. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    3. Maire Sylvain & Tanré Etienne, 2008. "Some new simulations schemes for the evaluation of Feynman–Kac representations," Monte Carlo Methods and Applications, De Gruyter, vol. 14(1), pages 29-51, January.
    4. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    5. Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2017. "The Value of Timing Risk," Papers 1701.05695, arXiv.org.
    6. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    7. Giorgia Callegaro & Abass Sagna, 2009. "An application to credit risk of a hybrid Monte Carlo-Optimal quantization method," Papers 0907.0645, arXiv.org.
    8. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    9. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    10. Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.
    11. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    12. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    13. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    14. Cetin, Umut & Hok, Julien, 2024. "Speeding up the Euler scheme for killed diffusions," LSE Research Online Documents on Economics 120789, London School of Economics and Political Science, LSE Library.
    15. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    16. repec:hal:wpaper:hal-00400666 is not listed on IDEAS
    17. Hideharu Funahashi & Tomohide Higuchi, 2018. "An analytical approximation for single barrier options under stochastic volatility models," Annals of Operations Research, Springer, vol. 266(1), pages 129-157, July.
    18. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    19. Cetin, Umut, 2018. "Diffusion transformations, Black-Scholes equation and optimal stopping," LSE Research Online Documents on Economics 87261, London School of Economics and Political Science, LSE Library.
    20. Rey Clément, 2017. "Convergence in total variation distance of a third order scheme for one-dimensional diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 1-12, March.
    21. Carbone, Raffaella, 2004. "Binomial approximation of Brownian motion and its maximum," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 271-285, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:26:y:2019:i:4:d:10.1007_s10690-019-09278-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.