IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2019-166-3.html
   My bibliography  Save this article

A Weighted Balance Model of Opinion Hyperpolarization

Author

Abstract

Polarization is threatening the stability of democratic societies. Until now, polarization research has focused on opinion extremeness, overlooking the correlation between different policy issues. In this paper, we explain the emergence of hyperpolarization, i.e., the combination of extremeness and correlation between issues, by developing a new theory of opinion formation called "Weighted Balance Theory (WBT)". WBT extends Heider's cognitive balance theory to encompass multiple weighted attitudes. We validated WBT on empirical data from the 2016 National Election Survey. Furthermore, we developed an opinion dynamics model based on WBT, which, for the first time, is able to generate hyperpolarization and to explain the link between affective and opinion polarization. Finally, our theory encompasses other phenomena of opinion dynamics, including mono-polarization and backfire effects.

Suggested Citation

  • Simon Schweighofer & Frank Schweitzer & David Garcia, 2020. "A Weighted Balance Model of Opinion Hyperpolarization," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-5.
  • Handle: RePEc:jas:jasssj:2019-166-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/23/3/5/5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Károly Takács & Andreas Flache & Michael Mäs, 2016. "Discrepancy and Disliking Do Not Induce Negative Opinion Shifts," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin-Gutierrez, Samuel & Losada, Juan C. & Benito, Rosa M., 2023. "Multipolar social systems: Measuring polarization beyond dichotomous contexts," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Patrick Mellacher, 2021. "Opinion Dynamics with Conflicting Interests," Papers 2111.09408, arXiv.org.
    3. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    4. Mellacher, Patrick, 2023. "The impact of corona populism: Empirical evidence from Austria and theory," Journal of Economic Behavior & Organization, Elsevier, vol. 209(C), pages 113-140.
    5. Schweitzer, Frank, 2022. "Group relations, resilience and the I Ching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Andreas Flache, 2018. "About Renegades And Outgroup Haters: Modeling The Link Between Social Influence And Intergroup Attitudes," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-32, September.
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Thomas Feliciani & Andreas Flache & Michael Mäs, 2021. "Persuasion without polarization? Modelling persuasive argument communication in teams with strong faultlines," Computational and Mathematical Organization Theory, Springer, vol. 27(1), pages 61-92, March.
    5. Carpentras, Dino & Quayle, Michael, 2022. "Propagation of measurement error in opinion dynamics models: The case of the Deffuant model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2019-166-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.