IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-69-2.html
   My bibliography  Save this article

Modeling Spatial Contacts for Epidemic Prediction in a Large-Scale Artificial City

Author

Listed:

Abstract

Spatial contacts among human beings are considered as one of the influential factors during the transmission of contagious diseases, such as influenza and tuberculosis. Therefore, representing and understanding spatial contacts plays an important role in epidemic modeling research. However, most current research only considers regular spatial contacts such as contacts at home/school/office, or they assume static social networks for modeling social contacts and omit travel contacts in their epidemic models. This paper describes a way to model relatively complete spatial contacts in the context of a large-scale artificial city, which combines different data sources to construct an agent-based model of the city Beijing. In this model, agents have regular contacts when executing their daily activity patterns which is similar to other large-scale agent-based epidemic models. Besides, a microscopic public transportation component is included in the artificial city to model public travel contacts. Moreover, social contacts also emerge in this model due to the dynamic generation of social networks. To systematically examine the effect of the relatively complete spatial contacts have for epidemic prediction in the artificial city, a pandemic influenza disease progression model was implemented in this artificial city. The simulation results validated the model. In addition, the way to model spatial contacts in this paper shows potential not only for improving comprehension of disease spread dynamics, but also for use in other social systems, such as public transportation systems and city level evacuation planning.

Suggested Citation

  • Mingxin Zhang & Alexander Verbraeck & Rongqing Meng & Bin Chen & Xiaogang Qiu, 2016. "Modeling Spatial Contacts for Epidemic Prediction in a Large-Scale Artificial City," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-3.
  • Handle: RePEc:jas:jasssj:2015-69-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/19/4/3/3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Pengjun & Lü, Bin & Roo, Gert de, 2011. "Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era," Journal of Transport Geography, Elsevier, vol. 19(1), pages 59-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher J Lynch & Saikou Y Diallo & Hamdi Kavak & Jose J Padilla, 2020. "A content analysis-based approach to explore simulation verification and identify its current challenges," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-33, May.
    2. Kaxiras, Efthimios & Neofotistos, Georgios & Angelaki, Eleni, 2020. "The first 100 days: Modeling the evolution of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Angeli, Mattia & Neofotistos, Georgios & Mattheakis, Marios & Kaxiras, Efthimios, 2022. "Modeling the effect of the vaccination campaign on the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Fatima-Zohra Younsi & Djamila Hamdadou, 2021. "Dynamic Contact Network Simulation Model Based on Multi-Agent Systems," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libin Han & Chong Peng & Zhenyu Xu, 2022. "The Effect of Commuting Time on Quality of Life: Evidence from China," IJERPH, MDPI, vol. 20(1), pages 1-10, December.
    2. Zhong Zheng & Suhong Zhou & Xingdong Deng, 2022. "The spatially heterogeneous and double-edged effect of the built environment on commuting distance: Home-based and work-based perspectives," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-24, March.
    3. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    4. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    5. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    6. Wang, Xiaoquan & Yin, Chaoying & Zhang, Junyi & Shao, Chunfu & Wang, Shengyou, 2021. "Nonlinear effects of residential and workplace built environment on car dependence," Journal of Transport Geography, Elsevier, vol. 96(C).
    7. Sheng, Lu & Wu, Xiao & He, Yan, 2023. "Impact of residential relocation on activity-travel behaviors between household couples: A case study of Kunming, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    8. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.
    9. Chen, Wendong & Cheng, Long & Chen, Xuewu & Chen, Jingxu & Cao, Mengqiu, 2021. "Measuring accessibility to health care services for older bus passengers: A finer spatial resolution," Journal of Transport Geography, Elsevier, vol. 93(C).
    10. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Zhou, Jiangping & Murphy, Enda & Long, Ying, 2014. "Commuting efficiency in the Beijing metropolitan area: an exploration combining smartcard and travel survey data," Journal of Transport Geography, Elsevier, vol. 41(C), pages 175-183.
    12. Xia, Jianhong(Cecilia) & Nesbitt, Joshua & Daley, Rebekah & Najnin, Arfanara & Litman, Todd & Tiwari, Surya Prasad, 2016. "A multi-dimensional view of transport-related social exclusion: A comparative study of Greater Perth and Sydney," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 205-221.
    13. Qi Zhang & Esther Hiu-Kwan Yung & Edwin Hon-Wan Chan, 2021. "Meshing Sustainability with Satisfaction: An Investigation of Residents’ Perceptions in Three Different Neighbourhoods in Chengdu, China," Land, MDPI, vol. 10(11), pages 1-32, November.
    14. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    15. Teng Zhong & Guonian Lü & Xiuming Zhong & Haoming Tang & Yu Ye, 2020. "Measuring Human-Scale Living Convenience through Multi-Sourced Urban Data and a Geodesign Approach: Buildings as Analytical Units," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    16. Na Ta & Zhilin Liu & Yanwei Chai, 2019. "Help whom and help what? Intergenerational co-residence and the gender differences in time use among dual-earner households in Beijing, China," Urban Studies, Urban Studies Journal Limited, vol. 56(10), pages 2058-2074, August.
    17. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    18. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    19. Islam, Md Rabiul & Saphores, Jean-Daniel M., 2022. "An L.A. story: The impact of housing costs on commuting," Journal of Transport Geography, Elsevier, vol. 98(C).
    20. Fabio Nishimura & Breno Sampaio, 2016. "Efeito Da Habitação Sobre A Mortalidade Infantil: Evidências De Um Desenho De Regressão Descontínua," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 198, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-69-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.