IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i5p1195-1212.html
   My bibliography  Save this article

Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints

Author

Listed:
  • Chuljin Park

    (Department of Industrial Engineering, Hanyang University, Seoul, 04763, South Korea)

  • Seong-Hee Kim

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We consider a discrete optimization via simulation (DOvS) problem with stochastic constraints on secondary performance measures in which both objective and secondary performance measures need to be estimated by stochastic simulation. To solve the problem, we develop a new method called the Penalty Function with Memory (PFM). It is similar to an existing penalty-type method—which consists of a penalty parameter and a measure of violation of constraints—in a sense that it converts a DOvS problem with constraints into a series of unconstrained problems. However, PFM uses a different penalty parameter, called a penalty sequence, determined by the past history of feasibility checks on a solution. Specifically, assuming a minimization problem, a penalty sequence diverges to infinity for any infeasible solution but converges to zero for any feasible solution under certain conditions. As a result, a DOvS algorithm combined with PFM performs well even when an optimal feasible solution is a boundary solution with one or more active constraints. We prove convergence properties and discuss parameter selection for the implementation of PFM. Experimental results on a number of numerical examples show that a DOvS algorithm combined with PFM works well.

Suggested Citation

  • Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1195-1212
    DOI: 10.1287/opre.2015.1417
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1417
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yao Luo & Eunji Lim, 2013. "Simulation-based optimization over discrete sets with noisy constraints," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 699-715.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    4. Sigrún Andradóttir & Seong‐Hee Kim, 2010. "Fully sequential procedures for comparing constrained systems via simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 403-421, August.
    5. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    6. Alrefaei, Mahmoud H. & Andradottir, Sigrun, 2001. "A modification of the stochastic ruler method for discrete stochastic optimization," European Journal of Operational Research, Elsevier, vol. 133(1), pages 160-182, August.
    7. Susan R. Hunter & Raghu Pasupathy, 2013. "Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 527-542, August.
    8. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    2. Lee, Mi Lim & Park, Chuljin & Park, Dong Uk, 2018. "Self-adjusting the tolerance level in a fully sequential feasibility check procedure," European Journal of Operational Research, Elsevier, vol. 271(2), pages 733-745.
    3. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    4. Hyeong Soo Chang, 2020. "An asymptotically optimal strategy for constrained multi-armed bandit problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 545-557, June.
    5. Shing Chih Tsai & Tse Yang, 2017. "Rapid screening algorithms for stochastically constrained problems," Annals of Operations Research, Springer, vol. 254(1), pages 425-447, July.
    6. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    2. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.
    3. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    4. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    5. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    6. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    7. Lihua Sun & L. Jeff Hong & Zhaolin Hu, 2014. "Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search," Operations Research, INFORMS, vol. 62(6), pages 1416-1438, December.
    8. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    9. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    10. Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
    11. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.
    12. Yuwei Zhou & Sigrún Andradóttir & Seong-Hee Kim & Chuljin Park, 2022. "Finding Feasible Systems for Subjective Constraints Using Recycled Observations," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3080-3095, November.
    13. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    14. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    15. Sigrún Andradóttir, 2002. "Simulation Optimization: Integrating Research and Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 216-219, August.
    16. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
    17. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
    18. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    19. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    20. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1195-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.