IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i1p202-210.html
   My bibliography  Save this article

Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs

Author

Listed:
  • Binyuan Chen

    (Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721)

  • Simge Küçükyavuz

    (Department of Integrated Systems Engineering, The Ohio State University, Columbus, Ohio 43210)

  • Suvrajeet Sen

    (Department of Integrated Systems Engineering, The Ohio State University, Columbus, Ohio 43210)

Abstract

In this paper, we give a finite disjunctive programming procedure to obtain the convex hull of general mixed-integer linear programs (MILP) with bounded integer variables. We propose a finitely convergent convex hull tree algorithm that constructs a linear program that has the same optimal solution as the associated MILP. In addition, we combine the standard notion of sequential cutting planes with ideas underlying the convex hull tree algorithm to help guide the choice of disjunctions to use within a cutting plane method. This algorithm, which we refer to as the cutting plane tree algorithm , is shown to converge to an integral optimal solution in finitely many iterations. Finally, we illustrate the proposed algorithm on three well-known examples in the literature that require an infinite number of elementary or split disjunctions in a rudimentary cutting plane algorithm.

Suggested Citation

  • Binyuan Chen & Simge Küçükyavuz & Suvrajeet Sen, 2011. "Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs," Operations Research, INFORMS, vol. 59(1), pages 202-210, February.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:202-210
    DOI: 10.1287/opre.1100.0882
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0882
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan H. Owen & Sanjay Mehrotra, 2002. "On the Value of Binary Expansions for General Mixed-Integer Linear Programs," Operations Research, INFORMS, vol. 50(5), pages 810-819, October.
    2. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    3. Yang Yuan & Suvrajeet Sen, 2009. "Enhanced Cut Generation Methods for Decomposition-Based Branch and Cut for Two-Stage Stochastic Mixed-Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 480-487, August.
    4. VAN ROY, Tony J. & WOLSEY, Laurence A., 1985. "Valid inequalities and separation for uncapacitated fixed charge networks," LIDAM Reprints CORE 671, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. M. W. Padberg & T. J. Van Roy & L. A. Wolsey, 1985. "Valid Linear Inequalities for Fixed Charge Problems," Operations Research, INFORMS, vol. 33(4), pages 842-861, August.
    6. Padberg, M.W. & Van Roy, T.J. & Wolsey, L.A., 1985. "Valid linear inequalities for fixed charge problems," LIDAM Reprints CORE 656, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    2. Quentin Louveaux & Laurence Wolsey, 2007. "Lifting, superadditivity, mixed integer rounding and single node flow sets revisited," Annals of Operations Research, Springer, vol. 153(1), pages 47-77, September.
    3. Richard Laundy & Michael Perregaard & Gabriel Tavares & Horia Tipi & Alkis Vazacopoulos, 2009. "Solving Hard Mixed-Integer Programming Problems with Xpress-MP: A MIPLIB 2003 Case Study," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 304-313, May.
    4. Retsef Levi & Andrea Lodi & Maxim Sviridenko, 2008. "Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 461-474, May.
    5. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    6. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    7. Alper Atamtürk & Simge Küçükyavuz, 2005. "Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation," Operations Research, INFORMS, vol. 53(4), pages 711-730, August.
    8. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.
    9. Robert Bixby & Edward Rothberg, 2007. "Progress in computational mixed integer programming—A look back from the other side of the tipping point," Annals of Operations Research, Springer, vol. 149(1), pages 37-41, February.
    10. Fred Glover & Hanif Sherali, 2005. "Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints," Annals of Operations Research, Springer, vol. 140(1), pages 215-233, November.
    11. Agostinho Agra & Marielle Christiansen & Alexandrino Delgado, 2013. "Mixed Integer Formulations for a Short Sea Fuel Oil Distribution Problem," Transportation Science, INFORMS, vol. 47(1), pages 108-124, February.
    12. Doostmohammadi, Mahdi & Akartunalı, Kerem, 2018. "Valid inequalities for two-period relaxations of big-bucket lot-sizing problems: Zero setup case," European Journal of Operational Research, Elsevier, vol. 267(1), pages 86-95.
    13. Anulark Pinnoi & Wilbert E. Wilhelm, 1998. "Assembly System Design: A Branch and Cut Approach," Management Science, INFORMS, vol. 44(1), pages 103-118, January.
    14. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    15. Alper Atamtürk & Martin Savelsbergh, 2005. "Integer-Programming Software Systems," Annals of Operations Research, Springer, vol. 140(1), pages 67-124, November.
    16. Diego Klabjan & George L. Nemhauser, 2002. "A Polyhedral Study of Integer Variable Upper Bounds," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 711-739, November.
    17. Shi Li, 2020. "Constant Approximation Algorithm for Nonuniform Capacitated Multi-Item Lot Sizing via Strong Covering Inequalities," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 947-965, August.
    18. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    19. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar & Mohammad Hassan Sharifitabar, 2015. "A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 48-58, February.
    20. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:202-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.