IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i2p281-291.html
   My bibliography  Save this article

On the Undirected Rural Postman Problem: Tight Bounds Based on a New Formulation

Author

Listed:
  • Elena Fernández

    (Statistics and Operations Research Department, Technical University of Catalonia, Barcelona, Spain)

  • Oscar Meza

    (Computer Science and Information Technology Department, Simón Bolívar University, Baruta, Venezuela)

  • Robert Garfinkel

    (School of Business Administration, University of Connecticut, Storrs, Connecticut 06269)

  • Maruja Ortega

    (Computer Science and Information Technology Department, Simón Bolívar University, Baruta, Venezuela)

Abstract

The Rural Postman Problem (RPP) is a classic “edge-routing” problem. A mathematical programming formulation of the RPP that differs fundamentally from those in the literature was introduced, but not tested computationally, by Garfinkel and Webb (1999). A rudimentary algorithm that yields lower bounds via cutting planes and upper bounds via heuristics is developed and tested for a variation of that formulation. Computational results are encouraging, especially in terms of the relatively small number of added inequalities needed to get good lower bounds, and the fact that the vast majority of these have efficient, exact separation procedures. Note that a first algorithm based on this new formulation is computationally competitive, allowing the possibility of far more efficient and complex future realizations.

Suggested Citation

  • Elena Fernández & Oscar Meza & Robert Garfinkel & Maruja Ortega, 2003. "On the Undirected Rural Postman Problem: Tight Bounds Based on a New Formulation," Operations Research, INFORMS, vol. 51(2), pages 281-291, April.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:2:p:281-291
    DOI: 10.1287/opre.51.2.281.12790
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.2.281.12790
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.2.281.12790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manfred W. Padberg & M. R. Rao, 1982. "Odd Minimum Cut-Sets and b -Matchings," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 67-80, February.
    2. Alain Hertz & Gilbert Laporte & Pierrette Nanchen Hugo, 1999. "Improvement Procedures for the Undirected Rural Postman Problem," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 53-62, February.
    3. Letchford, Adam N., 1999. "The general routing polyhedron: A unifying framework," European Journal of Operational Research, Elsevier, vol. 112(1), pages 122-133, January.
    4. Corberan, A. & Sanchis, J. M., 1998. "The general routing problem polyhedron: Facets from the RPP and GTSP polyhedra," European Journal of Operational Research, Elsevier, vol. 108(3), pages 538-550, August.
    5. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    6. Letchford, Adam N., 1997. "New inequalities for the General Routing Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 317-322, January.
    7. Matteo Fischetti & Gilbert Laporte & Silvano Martello, 1993. "The Delivery Man Problem and Cumulative Matroids," Operations Research, INFORMS, vol. 41(6), pages 1055-1064, December.
    8. Corberan, A. & Sanchis, J. M., 1994. "A polyhedral approach to the rural postman problem," European Journal of Operational Research, Elsevier, vol. 79(1), pages 95-114, November.
    9. H. A. Eiselt & Michel Gendreau & Gilbert Laporte, 1995. "Arc Routing Problems, Part I: The Chinese Postman Problem," Operations Research, INFORMS, vol. 43(2), pages 231-242, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angel Corberán & Gustavo Mejía & José M. Sanchis, 2005. "New Results on the Mixed General Routing Problem," Operations Research, INFORMS, vol. 53(2), pages 363-376, April.
    2. Colombi, Marco & Mansini, Renata, 2014. "New results for the Directed Profitable Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 760-773.
    3. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2018. "A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem," Transportation Science, INFORMS, vol. 52(2), pages 353-369, March.
    4. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    5. Elena Fernández & Oscar Meza, 2004. "Even Cycles and Perfect Matching Problems with Side Constraints," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 381-396, September.
    6. Elena Fernández & Jessica Rodríguez-Pereira, 2017. "Multi-depot rural postman problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 340-372, July.
    7. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Corberán & Gustavo Mejía & José M. Sanchis, 2005. "New Results on the Mixed General Routing Problem," Operations Research, INFORMS, vol. 53(2), pages 363-376, April.
    2. Benavent, Enrique & Carrotta, Alessandro & Corberan, Angel & Sanchis, Jose M. & Vigo, Daniele, 2007. "Lower bounds and heuristics for the Windy Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 855-869, January.
    3. Barbara De Rosa & Gennaro Improta & Gianpaolo Ghiani & Roberto Musmanno, 2002. "The Arc Routing and Scheduling Problem with Transshipment," Transportation Science, INFORMS, vol. 36(3), pages 301-313, August.
    4. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    5. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    6. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2019. "Exact Solution of Several Families of Location-Arc Routing Problems," Transportation Science, INFORMS, vol. 53(5), pages 1313-1333, September.
    7. Julián Aráoz & Elena Fernández & Carles Franquesa, 2017. "The Generalized Arc Routing Problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 497-525, October.
    8. Elena Fernández & Jessica Rodríguez-Pereira, 2017. "Multi-depot rural postman problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 340-372, July.
    9. Rodríguez-Pereira, Jessica & Fernández, Elena & Laporte, Gilbert & Benavent, Enrique & Martínez-Sykora, Antonio, 2019. "The Steiner Traveling Salesman Problem and its extensions," European Journal of Operational Research, Elsevier, vol. 278(2), pages 615-628.
    10. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    11. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    12. Letchford, Adam N., 1999. "The general routing polyhedron: A unifying framework," European Journal of Operational Research, Elsevier, vol. 112(1), pages 122-133, January.
    13. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2018. "A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem," Transportation Science, INFORMS, vol. 52(2), pages 353-369, March.
    14. Letchford, A.N. & Eglese, R.W., 1998. "The rural postman problem with deadline classes," European Journal of Operational Research, Elsevier, vol. 105(3), pages 390-400, March.
    15. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    16. Corberan, A. & Sanchis, J. M., 1998. "The general routing problem polyhedron: Facets from the RPP and GTSP polyhedra," European Journal of Operational Research, Elsevier, vol. 108(3), pages 538-550, August.
    17. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    18. Cabral, Edgar Alberto & Gendreau, Michel & Ghiani, Gianpaolo & Laporte, Gilbert, 2004. "Solving the hierarchical Chinese postman problem as a rural postman problem," European Journal of Operational Research, Elsevier, vol. 155(1), pages 44-50, May.
    19. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    20. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:2:p:281-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.