IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v25y2017i2d10.1007_s11750-016-0434-z.html
   My bibliography  Save this article

Multi-depot rural postman problems

Author

Listed:
  • Elena Fernández

    (Universitat Politècnica de Catalunya-BcnTech)

  • Jessica Rodríguez-Pereira

    (Universitat Politècnica de Catalunya-BcnTech)

Abstract

This paper studies multi-depot rural postman problems on an undirected graph. These problems extend the well-known undirected rural postman problem to the case where there are several depots instead of just one. Linear integer programming formulations that only use binary variables are proposed for the problem that minimizes the overall routing costs and for the model that minimizes the length of the longest route. An exact branch-and-cut algorithm is presented for each considered model, where violated constraints of both types are separated in polynomial time. Despite the difficulty of the problems, the numerical results from a series of computational experiments with various types of instances illustrate a quite good behavior of the algorithms. When the overall routing costs are minimized, over 43 % of the instances were optimally solved at the root node, and 95 % were solved at termination, most of them with a small additional computational effort. When the length of the longest route is minimized, over 25 % of the instances were optimally solved at the root node, and 99 % were solved at termination.

Suggested Citation

  • Elena Fernández & Jessica Rodríguez-Pereira, 2017. "Multi-depot rural postman problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 340-372, July.
  • Handle: RePEc:spr:topjnl:v:25:y:2017:i:2:d:10.1007_s11750-016-0434-z
    DOI: 10.1007/s11750-016-0434-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-016-0434-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-016-0434-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muyldermans, L. & Cattrysse, D. & Van Oudheusden, D. & Lotan, T., 2002. "Districting for salt spreading operations," European Journal of Operational Research, Elsevier, vol. 139(3), pages 521-532, June.
    2. Alain Hertz & Gilbert Laporte & Pierrette Nanchen Hugo, 1999. "Improvement Procedures for the Undirected Rural Postman Problem," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 53-62, February.
    3. Amberg, Anita & Domschke, Wolfgang & Vo[ss], Stefan, 2000. "Multiple center capacitated arc routing problems: A tabu search algorithm using capacitated trees," European Journal of Operational Research, Elsevier, vol. 124(2), pages 360-376, July.
    4. Elena Fernández & Oscar Meza & Robert Garfinkel & Maruja Ortega, 2003. "On the Undirected Rural Postman Problem: Tight Bounds Based on a New Formulation," Operations Research, INFORMS, vol. 51(2), pages 281-291, April.
    5. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    6. Amberg, Anita & Domschke, Wolfgang & Voß, S., 2000. "Multiple center capacitated arc routing problems: a tabu search algorithm using capacitated trees," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 15855, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. E J Willemse & J W Joubert, 2012. "Applying min–max k postmen problems to the routing of security guards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 245-260, February.
    8. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.
    9. Alexander Butsch & Jörg Kalcsics & Gilbert Laporte, 2014. "Districting for Arc Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 809-824, November.
    10. Letchford, Adam N. & Salazar-González, Juan-José, 2015. "Stronger multi-commodity flow formulations of the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 730-738.
    11. Krushinsky, Dmitry & Van Woensel, Tom, 2015. "An approach to the asymmetric multi-depot capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 100-109.
    12. Corberan, A. & Sanchis, J. M., 1994. "A polyhedral approach to the rural postman problem," European Journal of Operational Research, Elsevier, vol. 79(1), pages 95-114, November.
    13. Corberan, A. & Sanchis, J. M., 1998. "The general routing problem polyhedron: Facets from the RPP and GTSP polyhedra," European Journal of Operational Research, Elsevier, vol. 108(3), pages 538-550, August.
    14. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    15. Enrique Benavent & Ángel Corberán & José Sanchis, 2010. "A metaheuristic for the min–max windy rural postman problem with K vehicles," Computational Management Science, Springer, vol. 7(3), pages 269-287, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2018. "A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem," Transportation Science, INFORMS, vol. 52(2), pages 353-369, March.
    2. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    3. Rodríguez-Pereira, Jessica & Fernández, Elena & Laporte, Gilbert & Benavent, Enrique & Martínez-Sykora, Antonio, 2019. "The Steiner Traveling Salesman Problem and its extensions," European Journal of Operational Research, Elsevier, vol. 278(2), pages 615-628.
    4. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    5. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    6. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    7. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    8. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2019. "Exact Solution of Several Families of Location-Arc Routing Problems," Transportation Science, INFORMS, vol. 53(5), pages 1313-1333, September.
    9. Angel Corberán & Gustavo Mejía & José M. Sanchis, 2005. "New Results on the Mixed General Routing Problem," Operations Research, INFORMS, vol. 53(2), pages 363-376, April.
    10. Jesica Armas & Peter Keenan & Angel A. Juan & Seán McGarraghy, 2019. "Solving large-scale time capacitated arc routing problems: from real-time heuristics to metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 135-162, February.
    11. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.
    12. Elena Fernández & Oscar Meza & Robert Garfinkel & Maruja Ortega, 2003. "On the Undirected Rural Postman Problem: Tight Bounds Based on a New Formulation," Operations Research, INFORMS, vol. 51(2), pages 281-291, April.
    13. Beullens, Patrick & Muyldermans, Luc & Cattrysse, Dirk & Van Oudheusden, Dirk, 2003. "A guided local search heuristic for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 147(3), pages 629-643, June.
    14. Fernández, Elena & Roca-Riu, Mireia & Speranza, M. Grazia, 2018. "The Shared Customer Collaboration Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1078-1093.
    15. Ávila, Thais & Corberán, Ángel & Plana, Isaac & Sanchis, José M., 2016. "A branch-and-cut algorithm for the profitable windy rural postman problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1092-1101.
    16. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    17. Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
    18. Colombi, Marco & Mansini, Renata, 2014. "New results for the Directed Profitable Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 760-773.
    19. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The directed profitable rural postman problem with incompatibility constraints," European Journal of Operational Research, Elsevier, vol. 261(2), pages 549-562.
    20. Barbara De Rosa & Gennaro Improta & Gianpaolo Ghiani & Roberto Musmanno, 2002. "The Arc Routing and Scheduling Problem with Transshipment," Transportation Science, INFORMS, vol. 36(3), pages 301-313, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:25:y:2017:i:2:d:10.1007_s11750-016-0434-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.