IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v45y1997i2p302-306.html
   My bibliography  Save this article

Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks

Author

Listed:
  • Prabuddha De

    (University of Dayton, Dayton, Ohio)

  • E. James Dunne

    (University of Dayton, Dayton, Ohio)

  • Jay B. Ghosh

    (University of Dayton, Dayton, Ohio)

  • Charles E. Wells

    (University of Dayton, Dayton, Ohio)

Abstract

This note addresses the discrete version of the well-known time-cost tradeoff problem for project networks, which has been studied previously in the standard project management literature as well as in the related literature on Decision-CPM. All the algorithms proposed thus far for the solution of the general problem exhibit exponential worst-case complexity, with the notable exception of the pseudo-polynomial dynamic program due to Hindelang and Muth. We first demonstrate that this algorithm is flawed, and that when we correct it, it no longer remains pseudo-polynomial. Continuing on in the main result of the note, we show that this is not at all surprising, since the problem is strongly NP-hard. Finally, we discuss the complexities of various network structures and validate an old conjecture that certain structures are necessarily more difficult to solve.

Suggested Citation

  • Prabuddha De & E. James Dunne & Jay B. Ghosh & Charles E. Wells, 1997. "Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks," Operations Research, INFORMS, vol. 45(2), pages 302-306, April.
  • Handle: RePEc:inm:oropre:v:45:y:1997:i:2:p:302-306
    DOI: 10.1287/opre.45.2.302
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.45.2.302
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.45.2.302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A B Hafızoğlu & M Azizoğlu, 2010. "Linear programming based approaches for the discrete time/cost trade-off problem in project networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 676-685, April.
    2. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    3. R L Bregman, 2009. "Preemptive expediting to improve project due date performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 120-129, January.
    4. Eleni Hadjiconstantinou & Evelina Klerides, 2010. "A new path-based cutting plane approach for the discrete time-cost tradeoff problem," Computational Management Science, Springer, vol. 7(3), pages 313-336, July.
    5. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    6. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    7. Bregman, Robert L., 2009. "A heuristic procedure for solving the dynamic probabilistic project expediting problem," European Journal of Operational Research, Elsevier, vol. 192(1), pages 125-137, January.
    8. Hongbo Li & Zhe Xu & Wenchao Wei, 2018. "Bi-Objective Scheduling Optimization for Discrete Time/Cost Trade-Off in Projects," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    9. Kosztyán, Zsolt T. & Pribojszki-Németh, Anikó & Szalkai, István, 2019. "Hybrid multimode resource-constrained maintenance project scheduling problem," Operations Research Perspectives, Elsevier, vol. 6(C).
    10. Chung-Lun Li & Nicholas G. Hall, 2019. "Work Package Sizing and Project Performance," Operations Research, INFORMS, vol. 67(1), pages 123-142, January.
    11. Xinhua Mao & Xin Lou & Changwei Yuan & Jibiao Zhou, 2020. "Resilience-Based Restoration Model for Supply Chain Networks," Mathematics, MDPI, vol. 8(2), pages 1-16, January.
    12. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    13. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    14. Wei He & Wenjing Li & Wei Wang, 2021. "Developing a Resource Allocation Approach for Resource-Constrained Construction Operation under Multi-Objective Operation," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    15. Akkan, Can & Drexl, Andreas & Kimms, Alf, 2000. "Network decomposition-based lower and upper bounds for the discrete time-cost tradeoff problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 527, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:45:y:1997:i:2:p:302-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.