IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v41y1993i5p935-946.html
   My bibliography  Save this article

Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems

Author

Listed:
  • Paul M. Thompson

    (Santa Clara University, Santa Clara, California)

  • Harilaos N. Psaraftis

    (National Technical University of Athens, Athens, Greece)

Abstract

This paper investigates the application of a new class of neighborhood search algorithms—cyclic transfers—to multivehicle routing and scheduling problems. These algorithms exploit the two-faceted decision structure inherent to this problem class: First, assigning demands to vehicles and, second, routing each vehicle through its assigned demand stops. We describe the application of cyclic transfers to vehicle routing and scheduling problems. Then we determine the worst-case performance of these algorithms for several classes of vehicle routing and scheduling problems. Next, we develop computationally efficient methods for finding negative cost cyclic transfers. Finally, we present computational results for three diverse vehicle routing and scheduling problems, which collectively incorporate a variety of constraint and objective function structures. Our results show that cyclic transfer methods are either comparable to or better than the best published heuristic algorithms for several complex and important vehicle routing and scheduling problems. Most importantly, they represent a novel approach to solution improvement which holds promise in many vehicle routing and scheduling problem domains.

Suggested Citation

  • Paul M. Thompson & Harilaos N. Psaraftis, 1993. "Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems," Operations Research, INFORMS, vol. 41(5), pages 935-946, October.
  • Handle: RePEc:inm:oropre:v:41:y:1993:i:5:p:935-946
    DOI: 10.1287/opre.41.5.935
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.41.5.935
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.41.5.935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    2. Gerald Senarclens de Grancy & Marc Reimann, 2016. "Vehicle routing problems with time windows and multiple service workers: a systematic comparison between ACO and GRASP," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 29-48, March.
    3. J-Y Potvin & M-A Naud, 2011. "Tabu search with ejection chains for the vehicle routing problem with private fleet and common carrier," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 326-336, February.
    4. Sungwon Lee & Taesung Hwang, 2018. "Estimating Emissions from Regional Freight Delivery under Different Urban Development Scenarios," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    5. Antonio Frangioni & Emiliano Necciari & Maria Grazia Scutellà, 2004. "A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 195-220, June.
    6. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    7. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    8. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    9. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    10. Crainic, Teodor Gabriel & Perboli, Guido & Tadei, Roberto, 2009. "TS2PACK: A two-level tabu search for the three-dimensional bin packing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 744-760, June.
    11. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    12. Christian Billing & Florian Jaehn & Thomas Wensing, 2018. "A multiperiod auto-carrier transportation problem with probabilistic future demands," Journal of Business Economics, Springer, vol. 88(7), pages 1009-1028, September.
    13. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    14. T Öncan & S N Kabadi & K P K Nair & A P Punnen, 2008. "VLSN search algorithms for partitioning problems using matching neighbourhoods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 388-398, March.
    15. Ravindra K. Ahuja & Jon Goodstein & Amit Mukherjee & James B. Orlin & Dushyant Sharma, 2007. "A Very Large-Scale Neighborhood Search Algorithm for the Combined Through-Fleet-Assignment Model," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 416-428, August.
    16. S Abdullah & S Ahmadi & E K Burke & M Dror & B McCollum, 2007. "A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1494-1502, November.
    17. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.
    18. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    19. Eric Angel & Evripidis Bampis & Fanny Pascual, 2008. "An exponential (matching based) neighborhood for the vehicle routing problem," Journal of Combinatorial Optimization, Springer, vol. 15(2), pages 179-190, February.
    20. Ravindra K. Ahuja & Wei Huang & H. Edwin Romeijn & Dolores Romero Morales, 2007. "A Heuristic Approach to the Multi-Period Single-Sourcing Problem with Production and Inventory Capacities and Perishability Constraints," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 14-26, February.
    21. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    22. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:41:y:1993:i:5:p:935-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.