Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings
Author
Abstract
Suggested Citation
DOI: 10.1287/moor.2017.0898
Download full text from publisher
References listed on IDEAS
- Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.
- NESTEROV, Yu., 2007. "Gradient methods for minimizing composite objective function," LIDAM Discussion Papers CORE 2007076, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrian S. Lewis & Jérôme Malick, 2008. "Alternating Projections on Manifolds," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 216-234, February.
- Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minh N. Dao & Neil D. Dizon & Jeffrey A. Hogan & Matthew K. Tam, 2021. "Constraint Reduction Reformulations for Projection Algorithms with Applications to Wavelet Construction," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 201-233, July.
- Minh N. Dao, & Hung M. Phan, 2019. "Linear Convergence of Projection Algorithms," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 715-738, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
- Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Mingqiang Li & Congying Han & Ruxin Wang & Tiande Guo, 2017. "Shrinking gradient descent algorithms for total variation regularized image denoising," Computational Optimization and Applications, Springer, vol. 68(3), pages 643-660, December.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
- Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
- Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.
- Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "A Brief Survey of Modern Optimization for Statisticians," International Statistical Review, International Statistical Institute, vol. 82(1), pages 46-70, April.
- Qihang Lin & Lin Xiao, 2015. "An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 633-674, April.
- David Salas & Lionel Thibault, 2019. "On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 189-210, July.
- Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
- Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
- Yao Dong & He Jiang, 2018. "A Two-Stage Regularization Method for Variable Selection and Forecasting in High-Order Interaction Model," Complexity, Hindawi, vol. 2018, pages 1-12, November.
- Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
- Qihang Lin & Xi Chen & Javier Peña, 2014. "A sparsity preserving stochastic gradient methods for sparse regression," Computational Optimization and Applications, Springer, vol. 58(2), pages 455-482, June.
- Jean-Baptiste Hiriart-Urruty & Jérôme Malick, 2012. "A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 551-577, June.
- R. Tyrrell Rockafellar, 2023. "Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm," Computational Optimization and Applications, Springer, vol. 86(3), pages 1327-1346, December.
- Y. D. Dong & A. Fischer, 2006. "A Framework for Analyzing Local Convergence Properties with Applications to Proximal-Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 131(1), pages 53-68, October.
- Xiubo Liang & Guoqiang Wang & Bo Yu, 2022. "A reduced proximal-point homotopy method for large-scale non-convex BQP," Computational Optimization and Applications, Springer, vol. 81(2), pages 539-567, March.
More about this item
Keywords
analysis of algorithms; feasibility; fixed points; Kurdyka-Lojasiewicz inequality; linear convergence; metric regularity; nonconvex; nonsmooth; proximal algorithms; subtransversality; transversality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1143-1176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.