IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i4p1143-1176.html
   My bibliography  Save this article

Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings

Author

Listed:
  • D. Russell Luke

    (Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083 Göttingen, Germany)

  • Nguyen H. Thao

    (Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, Netherlands)

  • Matthew K. Tam

    (Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083 Göttingen, Germany)

Abstract

We develop a framework for quantitative convergence analysis of Picard iterations of expansive set-valued fixed point mappings. There are two key components of the analysis. The first is a natural generalization of single-valued averaged mappings to expansive set-valued mappings that characterizes a type of strong calmness of the fixed point mapping. The second component to this analysis is an extension of the well-established notion of metric subregularity—or inverse calmness—of the mapping at fixed points. Convergence of expansive fixed point iterations is proved using these two properties, and quantitative estimates are a natural by-product of the framework. To demonstrate the application of the theory, we prove, for the first time, a number of results showing local linear convergence of nonconvex cyclic projections for inconsistent (and consistent) feasibility problems, local linear convergence of the forward-backward algorithm for structured optimization without convexity, strong or otherwise, and local linear convergence of the Douglas-Rachford algorithm for structured nonconvex minimization. This theory includes earlier approaches for known results, convex and nonconvex, as special cases.

Suggested Citation

  • D. Russell Luke & Nguyen H. Thao & Matthew K. Tam, 2018. "Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1143-1176, November.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1143-1176
    DOI: 10.1287/moor.2017.0898
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0898
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.
    2. NESTEROV, Yu., 2007. "Gradient methods for minimizing composite objective function," LIDAM Discussion Papers CORE 2007076, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
    4. Adrian S. Lewis & Jérôme Malick, 2008. "Alternating Projections on Manifolds," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 216-234, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minh N. Dao & Neil D. Dizon & Jeffrey A. Hogan & Matthew K. Tam, 2021. "Constraint Reduction Reformulations for Projection Algorithms with Applications to Wavelet Construction," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 201-233, July.
    2. Minh N. Dao, & Hung M. Phan, 2019. "Linear Convergence of Projection Algorithms," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 715-738, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    2. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    3. Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
    4. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    5. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    6. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    7. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    9. Mingqiang Li & Congying Han & Ruxin Wang & Tiande Guo, 2017. "Shrinking gradient descent algorithms for total variation regularized image denoising," Computational Optimization and Applications, Springer, vol. 68(3), pages 643-660, December.
    10. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    11. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    12. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    13. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    14. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    15. Umberto Amato & Anestis Antoniadis & Italia Feis & Irène Gijbels, 2022. "Penalized wavelet estimation and robust denoising for irregular spaced data," Computational Statistics, Springer, vol. 37(4), pages 1621-1651, September.
    16. Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.
    17. Wachirapong Jirakitpuwapat & Poom Kumam & Yeol Je Cho & Kanokwan Sitthithakerngkiet, 2019. "A General Algorithm for the Split Common Fixed Point Problem with Its Applications to Signal Processing," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    18. Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "A Brief Survey of Modern Optimization for Statisticians," International Statistical Review, International Statistical Institute, vol. 82(1), pages 46-70, April.
    19. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    20. Hoa T. Bui & Alexander Y. Kruger, 2019. "Extremality, Stationarity and Generalized Separation of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 211-264, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1143-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.