IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v41y1995i5p874-893.html
   My bibliography  Save this article

Fast Solution and Detection of Minimal Forecast Horizons in Dynamic Programs with a Single Indicator of the Future: Applications to Dynamic Lot-Sizing Models

Author

Listed:
  • Awi Federgruen

    (Graduate School of Business, Columbia University, New York, New York 10027)

  • Michal Tzur

    (Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel)

Abstract

In most dynamic planning problems, one observes that an optimal decision at any given stage depends on limited information, i.e., information pertaining to a limited set of adjacent or nearby stages. This holds in particular for planning problems over time, where an optimal decision in a given period depends on information related to a limited future time horizon, a so-called forecast horizon, only. In this paper we identify a general class of dynamic programs in which an efficient forward algorithm can be designed to solve the problem and to identify minimal forecast horizons. Such a procedure specifies necessary and sufficient conditions for a stage to arise as a forecast horizon. This class of dynamic programs includes the single-item dynamic lot-sizing model with general concave costs, both with and without backlogging, to which special attention is given.

Suggested Citation

  • Awi Federgruen & Michal Tzur, 1995. "Fast Solution and Detection of Minimal Forecast Horizons in Dynamic Programs with a Single Indicator of the Future: Applications to Dynamic Lot-Sizing Models," Management Science, INFORMS, vol. 41(5), pages 874-893, May.
  • Handle: RePEc:inm:ormnsc:v:41:y:1995:i:5:p:874-893
    DOI: 10.1287/mnsc.41.5.874
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.41.5.874
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.41.5.874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drexl, Andreas & Kimms, Alf, 1996. "Lot sizing and scheduling: Survey and extensions," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 421, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    3. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    4. Milind Dawande & Srinagesh Gavirneni & Sanjeewa Naranpanawe & Suresh Sethi, 2007. "Forecast Horizons for a Class of Dynamic Lot-Size Problems Under Discrete Future Demand," Operations Research, INFORMS, vol. 55(4), pages 688-702, August.
    5. Shen Hong & Deng Qiang & Lao Rebecca & Wu Simon, 2016. "A Case Study of Inventory Management in a Manufacturing Company in China," Nang Yan Business Journal, Sciendo, vol. 5(1), pages 20-40, December.
    6. Fuying Jing & Zirui Lan, 2017. "Forecast horizon of multi-item dynamic lot size model with perishable inventory," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    7. Kimms, Alf, 1996. "Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 418, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    9. Archis Ghate & Robert L. Smith, 2013. "A Linear Programming Approach to Nonstationary Infinite-Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 61(2), pages 413-425, April.
    10. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:41:y:1995:i:5:p:874-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.