IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v20y2020i3p134-140.html
   My bibliography  Save this article

The Fendt VarioTakt: Revolutionizing Mixed-Model Assembly Line Production

Author

Listed:
  • Arnd Huchzermeier

    (WHU-Otto Beisheim School of Management, 56179 Vallendar, Germany)

  • Tobias Mönch

    (bAGCO GmbH, 87616 Marktoberdorf, Germany)

  • Peter Bebersdorf

    (bAGCO GmbH, 87616 Marktoberdorf, Germany)

Abstract

This case study is designed for undergraduate and graduate (EMBA, MBA, or MSc) students in operations management and e-commerce courses that focus on customer-centric manufacturing approaches. Motivated by the real-world application at Fendt, an innovation leader in the global market for agricultural machinery, students learn about a novel assembly line balancing and sequencing approach for mixed-model assembly with a special twist of an unusually high and varying degree of customization for each product. By developing and implementing the “VarioTakt,” Fendt is able to eradicate most labor inefficiencies (namely, idle time and utility work) and to curtail capital investments while raising its responsiveness to customer demand and plant productivity to a level that today serves as a global benchmark within its own industry and across industries such as automotive, machine tools, and electronics.

Suggested Citation

  • Arnd Huchzermeier & Tobias Mönch & Peter Bebersdorf, 2020. "The Fendt VarioTakt: Revolutionizing Mixed-Model Assembly Line Production," INFORMS Transactions on Education, INFORMS, vol. 20(3), pages 134-140, May.
  • Handle: RePEc:inm:orited:v:20:y:2020:i:3:p:134-140
    DOI: 10.1287/ited.2019.0224ca
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ited.2019.0224ca
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2019.0224ca?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick T. Thomopoulos, 1967. "Line Balancing-Sequencing for Mixed-Model Assembly," Management Science, INFORMS, vol. 14(2), pages 59-75, October.
    2. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    3. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.
    4. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.
    5. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    6. Otto, Christian & Otto, Alena, 2014. "Multiple-source learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 234(1), pages 253-265.
    7. Nearchou, Andreas C., 2011. "Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization," International Journal of Production Economics, Elsevier, vol. 129(2), pages 242-250, February.
    8. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    9. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    10. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    11. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    12. Kimms, Alf, 1998. "Minimal investment budgets for flow line configuration," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 470, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    14. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    15. Drexl, Andreas & Kimms, Alf, 1997. "Sequencing JIT mixed-model assembly lines under station load- and part usage-constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 460, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    17. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    18. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    19. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    20. Abolfazl Jafari Asl & Maghsud Solimanpur & Ravi Shankar, 2019. "Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 603-627, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:20:y:2020:i:3:p:134-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.