IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v47y2017i6p537-554.html
   My bibliography  Save this article

Near-Optimal Course Scheduling at the Technion

Author

Listed:
  • Ofer Strichman

    (Information Systems Engineering, Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology, Haifa 3200003, Israel)

Abstract

The focus of this article is the automation of course, classroom, and exam scheduling for the faculty of Industrial Engineering (IE) at the Technion in Haifa, Israel. The system, called the Technion Industrial Engineering Scheduler ( TieSched ), has been operational since 2012. It is based on a distributed collection of constraints and multiple engines running in parallel, including SAT, pseudo-Boolean, CSP, and weighted-Max-SAT solvers. A sophisticated decision support subsystem accommodates manual edits to the schedule. This article describes the manual process used previously and the TieSched system architecture, and it provides details about the model formulation and solving engines. It also presents the new process that TieSched enables and the path to stakeholder acceptance. The benefits of TieSched include improved efficiency of the scheduling process (i.e., a reduction from 9–10 to 3–4 weeks), better schedules, and enhanced levels of service to teachers, assistants, and students.

Suggested Citation

  • Ofer Strichman, 2017. "Near-Optimal Course Scheduling at the Technion," Interfaces, INFORMS, vol. 47(6), pages 537-554, December.
  • Handle: RePEc:inm:orinte:v:47:y:2017:i:6:p:537-554
    DOI: 10.1287/inte.2017.0920
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2017.0920
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2017.0920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Asín Achá & Robert Nieuwenhuis, 2014. "Curriculum-based course timetabling with SAT and MaxSAT," Annals of Operations Research, Springer, vol. 218(1), pages 71-91, July.
    2. de Werra, D., 1985. "An introduction to timetabling," European Journal of Operational Research, Elsevier, vol. 19(2), pages 151-162, February.
    3. Ender Özcan & Edmund K. Burke & Barry McCollum & Dag Kjenstad & Atle Riise, 2016. "The Practice and Theory of Automated Timetabling (2012)," Annals of Operations Research, Springer, vol. 239(1), pages 1-2, April.
    4. Timothy R. Hinkin & Gary M. Thompson, 2002. "SchedulExpert: Scheduling Courses in the Cornell University School of Hotel Administration," Interfaces, INFORMS, vol. 32(6), pages 45-57, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Alan Bowman, 2021. "Developing Optimal Student Plans of Study," Interfaces, INFORMS, vol. 51(6), pages 409-421, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    2. Jaime Miranda, 2010. "eClasSkeduler: A Course Scheduling System for the Executive Education Unit at the Universidad de Chile," Interfaces, INFORMS, vol. 40(3), pages 196-207, June.
    3. Biniyam Asmare Kassa, 2015. "Implementing a Class-Scheduling System at the College of Business and Economics of Bahir Dar University, Ethiopia," Interfaces, INFORMS, vol. 45(3), pages 203-215, June.
    4. Arnaud Coster & Nysret Musliu & Andrea Schaerf & Johannes Schoisswohl & Kate Smith-Miles, 2022. "Algorithm selection and instance space analysis for curriculum-based course timetabling," Journal of Scheduling, Springer, vol. 25(1), pages 35-58, February.
    5. Jagota, Arun, 1996. "An adaptive, multiple restarts neural network algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 93(2), pages 257-270, September.
    6. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part I: Model, Complexity Status, and Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 387, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    8. Caramia, Massimiliano & Dell'Olmo, Paolo, 2008. "Embedding a novel objective function in a two-phased local search for robust vertex coloring," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1358-1380, September.
    9. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "Pre-processing techniques for resource allocation in the heterogeneous case," European Journal of Operational Research, Elsevier, vol. 107(2), pages 470-491, June.
    10. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    11. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2022. "Introducing UniCorT: an iterative university course timetabling tool with MaxSAT," Journal of Scheduling, Springer, vol. 25(4), pages 371-390, August.
    12. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.
    13. Gerhard Post & Samad Ahmadi & Sophia Daskalaki & Jeffrey Kingston & Jari Kyngas & Cimmo Nurmi & David Ranson, 2012. "An XML format for benchmarks in High School Timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 385-397, April.
    14. Hertz, Alain & Robert, Vincent, 1998. "Constructing a course schedule by solving a series of assignment type problems," European Journal of Operational Research, Elsevier, vol. 108(3), pages 585-603, August.
    15. P Lara-Velázquez & R López-Bracho & J Ramírez-Rodríguez & J Yáñez, 2011. "A model for timetabling problems with period spread constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 217-222, January.
    16. Severino F. Galán, 2017. "Simple decentralized graph coloring," Computational Optimization and Applications, Springer, vol. 66(1), pages 163-185, January.
    17. Hadrien Cambazard & Emmanuel Hebrard & Barry O’Sullivan & Alexandre Papadopoulos, 2012. "Local search and constraint programming for the post enrolment-based course timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 111-135, April.
    18. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    19. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    20. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:47:y:2017:i:6:p:537-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.