IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v45y2015i6p529-542.html
   My bibliography  Save this article

Assigning Panels to Meeting Rooms at the National Science Foundation

Author

Listed:
  • Jason J. Sauppe

    (Department of Computer Science, University of Wisconsin–La Crosse, La Crosse, Wisconsin 54601)

  • David R. Morrison

    (Inverse Limit, The Woodlands, Texas 77381)

  • Sheldon H. Jacobson

    (Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801)

Abstract

The National Science Foundation provides funding for scientific research throughout the United States. Its program directors solicit requests for funding through calls for proposals and then assemble panels of experts to review these requests. The program directors are responsible for reserving meeting rooms for each of the panels. Our work automates much of the room reservation process by constructing and solving an optimization model that determines how panels should be assigned to available rooms to maximize the utilization of available meeting rooms. The model accommodates multiday panels, differences between the rooms (e.g., capacity, projector support), and double-booking constraints for both rooms and panel organizers. Staff members at the National Science Foundation are currently using this software, and have employed it to successfully schedule engineering directorate panels for the 2014–2015 review year.

Suggested Citation

  • Jason J. Sauppe & David R. Morrison & Sheldon H. Jacobson, 2015. "Assigning Panels to Meeting Rooms at the National Science Foundation," Interfaces, INFORMS, vol. 45(6), pages 529-542, December.
  • Handle: RePEc:inm:orinte:v:45:y:2015:i:6:p:529-542
    DOI: 10.1287/inte.2015.0827
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2015.0827
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2015.0827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    2. C. Roger Glassey & Michael Mizrach, 1986. "A Decision Support System for Assigning Classes to Rooms," Interfaces, INFORMS, vol. 16(5), pages 92-100, October.
    3. Michael W. Carter & Craig A. Tovey, 1992. "When Is the Classroom Assignment Problem Hard?," Operations Research, INFORMS, vol. 40(1-supplem), pages 28-39, February.
    4. Julia Chuzhoy & Rafail Ostrovsky & Yuval Rabani, 2006. "Approximation Algorithms for the Job Interval Selection Problem and Related Scheduling Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 730-738, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
    2. Clarence H. Martin, 2004. "Ohio University's College of Business Uses Integer Programming to Schedule Classes," Interfaces, INFORMS, vol. 34(6), pages 460-465, December.
    3. Yim, Seho & Hong, Sung-Pil & Park, Myoung-Ju & Chung, Yerim, 2022. "Inverse interval scheduling via reduction on a single machine," European Journal of Operational Research, Elsevier, vol. 303(2), pages 541-549.
    4. Abbas Al-Refaie & Toly Chen & Mays Judeh, 2018. "Optimal operating room scheduling for normal and unexpected events in a smart hospital," Operational Research, Springer, vol. 18(3), pages 579-602, October.
    5. Gang Yu & Julian Pachon & Benjamin Thengvall & Darryal Chandler & Al Wilson, 2004. "Optimizing Pilot Planning and Training for Continental Airlines," Interfaces, INFORMS, vol. 34(4), pages 253-264, August.
    6. Dujuan Wang & Feng Liu & Yunqiang Yin & Jianjun Wang & Yanzhang Wang, 2015. "Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 967-981, November.
    7. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    8. Mohammad Mahdi Nasiri & Farzaneh Shakouhi & Fariborz Jolai, 2019. "A fuzzy robust stochastic mathematical programming approach for multi-objective scheduling of the surgical cases," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 890-910, September.
    9. Craig A. Tovey, 2002. "Tutorial on Computational Complexity," Interfaces, INFORMS, vol. 32(3), pages 30-61, June.
    10. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    11. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    12. repec:ipg:wpaper:14 is not listed on IDEAS
    13. Raphael Medeiros Alves & Francisco Cunha & Anand Subramanian & Alisson V. Brito, 2022. "Minimizing energy consumption in a real-life classroom assignment problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1149-1175, December.
    14. Lee, Sangbok & Yih, Yuehwern, 2014. "Reducing patient-flow delays in surgical suites through determining start-times of surgical cases," European Journal of Operational Research, Elsevier, vol. 238(2), pages 620-629.
    15. Jeffrey Kingston, 2012. "Resource assignment in high school timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 241-254, April.
    16. H. Fei & C. Chu & N. Meskens, 2009. "Solving a tactical operating room planning problem by a column-generation-based heuristic procedure with four criteria," Annals of Operations Research, Springer, vol. 166(1), pages 91-108, February.
    17. Yang-Kuei Lin & Yin-Yi Chou, 2020. "A hybrid genetic algorithm for operating room scheduling," Health Care Management Science, Springer, vol. 23(2), pages 249-263, June.
    18. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    19. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    20. Iftah Gamzu & Danny Segev, 2019. "A polynomial-time approximation scheme for the airplane refueling problem," Journal of Scheduling, Springer, vol. 22(1), pages 119-135, February.
    21. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    22. Fei, Hongying & Meskens, Nadine & Combes, Catherine & Chu, Chengbin, 2009. "The endoscopy scheduling problem: A case study with two specialised operating rooms," International Journal of Production Economics, Elsevier, vol. 120(2), pages 452-462, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:45:y:2015:i:6:p:529-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.