IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v42y2012i1p33-44.html
   My bibliography  Save this article

Branch Reconfiguration Practice Through Operations Research in Industrial and Commercial Bank of China

Author

Listed:
  • Xiquan Wang

    (Industrial and Commercial Bank of China, 100140 Beijing, China)

  • Xingdong Zhang

    (Industrial and Commercial Bank of China, 100140 Beijing, China)

  • Xiaohu Liu

    (Industrial and Commercial Bank of China, 100140 Beijing, China)

  • Lijie Guo

    (Industrial and Commercial Bank of China, 100140 Beijing, China)

  • Thomas Li

    (IBM Research—China, 100193 Beijing, China)

  • Jin Dong

    (IBM Research—China, 100193 Beijing, China)

  • Wenjun Yin

    (IBM Research—China, 100193 Beijing, China)

  • Ming Xie

    (IBM Research—China, 100193 Beijing, China)

  • Bin Zhang

    (IBM Research—China, 100193 Beijing, China)

Abstract

Industrial and Commercial Bank of China (ICBC), the world's largest publicly traded bank as measured by market capitalization, deposit volume, and profitability, has a network of over 16,000 branches. This network is an important core competency and is fundamental to ICBC business development. To keep its leading position in the fast-changing and competitive China market, ICBC needed to reconfigure its branch locations and service capabilities to match the regional economy and customer distribution; therefore, it had to quickly identify new high-potential market areas in which to open branches. ICBC partnered with IBM to customize an operations research-based branch network optimization system, Branch Reconfiguration (BR), which it has implemented in over 40 major cities in China. In a typical major city (e.g., Suzhou), ICBC attributes US $1.04 billion in increased deposits to BR. The BR project is an example of successfully using operations research and management sciences to transform the service channels of a large bank in a manner that will continue to improve the bank's business development and decision making.

Suggested Citation

  • Xiquan Wang & Xingdong Zhang & Xiaohu Liu & Lijie Guo & Thomas Li & Jin Dong & Wenjun Yin & Ming Xie & Bin Zhang, 2012. "Branch Reconfiguration Practice Through Operations Research in Industrial and Commercial Bank of China," Interfaces, INFORMS, vol. 42(1), pages 33-44, February.
  • Handle: RePEc:inm:orinte:v:42:y:2012:i:1:p:33-44
    DOI: 10.1287/inte.1110.0614
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1110.0614
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1110.0614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leyuan Shi & Sigurdur Ólafsson, 2000. "Nested Partitions Method for Global Optimization," Operations Research, INFORMS, vol. 48(3), pages 390-407, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Yavari & Mohammad Mousavi-Saleh, 2021. "Restructuring hierarchical capacitated facility location problem with extended coverage radius under uncertainty," Operational Research, Springer, vol. 21(1), pages 91-138, March.
    2. Diego Ruiz-Hernández & David Delgado-Gómez, 2016. "The stochastic capacitated branch restructuring problem," Annals of Operations Research, Springer, vol. 246(1), pages 77-100, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Ming Yang & Xin-Jia Jiang, 2020. "Yard Crane Scheduling in the Ground Trolley-Based Automated Container Terminal," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-28, March.
    2. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    3. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    4. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    5. Leyuan Shi & Sigurdur O´lafsson, 2000. "Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 271-291, September.
    6. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    7. David R. Morrison & Jason J. Sauppe & Wenda Zhang & Sheldon H. Jacobson & Edward C. Sewell, 2017. "Cyclic best first search: Using contours to guide branch‐and‐bound algorithms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 64-82, February.
    8. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    9. Szu Hui Ng & Stephen E. Chick, 2004. "Design of follow‐up experiments for improving model discrimination and parameter estimation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1129-1148, December.
    10. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    11. Lingxuan Liu & Leyuan Shi, 2019. "Simulation Optimization on Complex Job Shop Scheduling with Non-Identical Job Sizes," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-26, October.
    12. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    13. Choi, Hyunhong & Koo, Yoonmo, 2018. "Using Contingent Valuation and Numerical Methods to Determine Optimal Locations for Environmental Facilities: Public Arboretums in South Korea," Ecological Economics, Elsevier, vol. 149(C), pages 184-201.
    14. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    15. Michael Macgregor Perry, 2021. "Fisheries Management in Congested Waters: A Game-Theoretic Assessment of the East China Sea," Papers 2110.13966, arXiv.org, revised Feb 2022.
    16. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    17. G. Alon & D. Kroese & T. Raviv & R. Rubinstein, 2005. "Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment," Annals of Operations Research, Springer, vol. 134(1), pages 137-151, February.
    18. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    19. M. A. Fleischer & S. H. Jacobson, 2002. "Scale Invariance Properties in the Simulated Annealing Algorithm," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 219-241, September.
    20. Alfredo Garcia & Stephen D. Patek & Kaushik Sinha, 2007. "A Decentralized Approach to Discrete Optimization via Simulation: Application to Network Flow," Operations Research, INFORMS, vol. 55(4), pages 717-732, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:42:y:2012:i:1:p:33-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.