IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v16y2022i1p30.html
   My bibliography  Save this article

New Approach to Obtain the Maximum Flow in a Network and Optimal Solution for the Transportation Problems

Author

Listed:
  • E. M. U. S. B. Ekanayake
  • W. B. Daundasekara
  • S. P. C. Perera

Abstract

The maximum flow problem is also one of the highly regarded problems in the field of optimization theory in which the objective is to find a feasible flow through a flow network that obtains the maximum possible flow rate from source to sink. The literature demonstrates that different techniques have been developed in the past to handle the maximum amount of flow that the network can handle. The Ford-Fulkerson algorithm and Dinic's Algorithm are the two major algorithms for solving these types of problems. Also, the Max-Flow Min-Cut Theorem, the Scaling Algorithm, and the Push–relabel maximum flow algorithm are the most acceptable methods for finding the maximum flows in a flow network. In this novel approach, the paper develops an alternative method of finding the maximum flow between the source and target nodes of a network based on the "max-flow." Also, a new algorithmic approach to solving the transportation problem (minimizing the transportation cost) is based upon the new maximum flow algorithm. It is also to be noticed that this method requires a minimum number of iterations to achieve optimality. This study's algorithmic approach is less complicated than the well-known meta-heuristic algorithms in the literature.

Suggested Citation

  • E. M. U. S. B. Ekanayake & W. B. Daundasekara & S. P. C. Perera, 2022. "New Approach to Obtain the Maximum Flow in a Network and Optimal Solution for the Transportation Problems," Modern Applied Science, Canadian Center of Science and Education, vol. 16(1), pages 1-30, February.
  • Handle: RePEc:ibn:masjnl:v:16:y:2022:i:1:p:30
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/46660/49849
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/46660
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. K. Ahuja & James B. Orlin, 1989. "A Fast and Simple Algorithm for the Maximum Flow Problem," Operations Research, INFORMS, vol. 37(5), pages 748-759, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary R. Waissi, 1993. "A new polynomial algorithm for maximum value flow with an efficient parallel implementation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 393-414, April.
    2. Ahuja, Ravindra K., 1956-, 1995. "Computational investigations of maximum flow algorithms," Working papers 3811-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Huynh Tuong, Nguyen & Soukhal, Ameur, 2010. "Due dates assignment and JIT scheduling with equal-size jobs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 280-289, September.
    4. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    5. Ravindra K. Ahuja & James B. Orlin, 1991. "Distance‐directed augmenting path algorithms for maximum flow and parametric maximum flow problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 413-430, June.
    6. Antonio Sedeño‐Noda & Carlos González‐Martín, 2000. "A O(nm log(U/n)) time maximum flow algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(6), pages 511-520, September.
    7. Ahuja, Ravindra K. & Kodialam, Murali & Mishra, Ajay K. & Orlin, James B., 1997. "Computational investigations of maximum flow algorithms," European Journal of Operational Research, Elsevier, vol. 97(3), pages 509-542, March.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:16:y:2022:i:1:p:30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.