IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1325071.html
   My bibliography  Save this article

A New Approach for Reconstruction of IMFs of Decomposition and Ensemble Model for Forecasting Crude Oil Prices

Author

Listed:
  • Peng Xu
  • Muhammad Aamir
  • Ani Shabri
  • Muhammad Ishaq
  • Adnan Aslam
  • Li Li

Abstract

Accurate forecasting for the crude oil price is important for government agencies, investors, and researchers. To cope with this issue, in this paper, a new paradigm is designed for the reconstruction of intrinsic mode functions (IMFs) of decomposition and ensemble models to reduce the complexity in computation and to enhance the forecasting accuracy. Decomposition and ensemble methodologies significantly enhance the forecasting accuracy under the framework of “divide and conquer” with the proposed reconstruction of IMFs method. The proposed approach used the autocorrelation at lag 1 of all IMFs for the reconstruction. The ensemble empirical mode decomposition (EEMD) technique is employed to decompose the data into different IMFs. Models that utilized the decomposed data relatively perform well, as compared to its application to the undecomposed data. However, sometimes, the decomposition may produce poor results due to the error accumulation at the end. Thus, in this study, the reconstruction of IMFs is proposed for minimizing the aforementioned error, thereby increasing the forecasting accuracy. The Brent and West Texas Intermediate (WTI) datasets (daily and weekly) are exploited to compare the forecasting performance of autoregressive integrated moving average (ARIMA) along with artificial neural network (ANN) models with the decomposed data. The results have proven that the new paradigm of reconstruction of IMFs through autocorrelation was a better and simple strategy that significantly improved the performance of single models including ARIMA and ANN. Hence, it is concluded that the proposed model takes less computational time and achieved higher forecasting accuracy with the reconstruction of IMFs as opposed to using all IMFs.

Suggested Citation

  • Peng Xu & Muhammad Aamir & Ani Shabri & Muhammad Ishaq & Adnan Aslam & Li Li, 2020. "A New Approach for Reconstruction of IMFs of Decomposition and Ensemble Model for Forecasting Crude Oil Prices," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-23, October.
  • Handle: RePEc:hin:jnlmpe:1325071
    DOI: 10.1155/2020/1325071
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1325071.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1325071.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1325071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
    2. Du, Xiaoyi & Wu, Dongdong & Yan, Yabo, 2023. "Prediction of electricity consumption based on GM(1,Nr) model in Jiangsu province, China," Energy, Elsevier, vol. 262(PA).
    3. Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
    4. Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
    5. Zhu, Ting & Wang, Wenbo & Yu, Min, 2023. "A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition, BiGRU and error correction," Energy, Elsevier, vol. 276(C).
    6. Wu, Junhao & Dong, Jinghan & Wang, Zhaocai & Hu, Yuan & Dou, Wanting, 2023. "A novel hybrid model based on deep learning and error correction for crude oil futures prices forecast," Resources Policy, Elsevier, vol. 83(C).
    7. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    8. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1325071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.