IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9274980.html
   My bibliography  Save this article

Multiobjective Optimal Control of FOPID Controller for Hydraulic Turbine Governing Systems Based on Reinforced Multiobjective Harris Hawks Optimization Coupling with Hybrid Strategies

Author

Listed:
  • Wenlong Fu
  • QiPeng Lu

Abstract

The controlling parameter tuning of the hydraulic turbine governing system (HTGS) is always deduced under single operating condition and is not suitable for the changeable operating conditions of the hydraulic turbine. For this purpose, multiobjective optimization problem of fractional order PID (FOPID) controller for HTGS is constructed through the consideration of no-load disturbance and on-load disturbance operation conditions, where the performance indicators of integral time absolute error (ITAE) under both operation conditions are employed as the objective functions. To achieve the optimum, the multiobjective version of newly proposed Harris hawks optimization (MOHHO) is established to solve the optimization issue. Additionally, hybrid strategies which include Latin hypercube sampling initialization, modified differential evolution operator, and mutation operator are coupled into MOHHO (HMOHHO) to promote the global searching capability. Simultaneously, the linear model of rabbit energy within MOHHO is replaced with a nonlinear one to further enhance the searching capacity. Subsequently, the effectiveness and superiority of the proposed HMOHHO are verified by several multiobjective UF and ZDT test problems. Finally, the practical application and contrastive analysis ascertain that the constructed multiobjective problem of FOPID controller is suitable for HTGS under changeable operating conditions, and the proposed HMOHHO is effective in solving the issue.

Suggested Citation

  • Wenlong Fu & QiPeng Lu, 2020. "Multiobjective Optimal Control of FOPID Controller for Hydraulic Turbine Governing Systems Based on Reinforced Multiobjective Harris Hawks Optimization Coupling with Hybrid Strategies," Complexity, Hindawi, vol. 2020, pages 1-17, July.
  • Handle: RePEc:hin:complx:9274980
    DOI: 10.1155/2020/9274980
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9274980.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9274980.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9274980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    2. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    3. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    4. Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
    5. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    6. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    7. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    8. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9274980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.