IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8692046.html
   My bibliography  Save this article

Finite Precision Logistic Map between Computational Efficiency and Accuracy with Encryption Applications

Author

Listed:
  • Wafaa S. Sayed
  • Ahmed G. Radwan
  • Ahmed A. Rezk
  • Hossam A. H. Fahmy

Abstract

Chaotic systems appear in many applications such as pseudo-random number generation, text encryption, and secure image transfer. Numerical solutions of these systems using digital software or hardware inevitably deviate from the expected analytical solutions. Chaotic orbits produced using finite precision systems do not exhibit the infinite period expected under the assumptions of infinite simulation time and precision. In this paper, digital implementation of the generalized logistic map with signed parameter is considered. We present a fixed-point hardware realization of a Pseudo-Random Number Generator using the logistic map that experiences a trade-off between computational efficiency and accuracy. Several introduced factors such as the used precision, the order of execution of the operations, parameter, and initial point values affect the properties of the finite precision map. For positive and negative parameter cases, the studied properties include bifurcation points, output range, maximum Lyapunov exponent, and period length. The performance of the finite precision logistic map is compared in the two cases. A basic stream cipher system is realized to evaluate the system performance for encryption applications for different bus sizes regarding the encryption key size, hardware requirements, maximum clock frequency, NIST and correlation, histogram, entropy, and Mean Absolute Error analyses of encrypted images.

Suggested Citation

  • Wafaa S. Sayed & Ahmed G. Radwan & Ahmed A. Rezk & Hossam A. H. Fahmy, 2017. "Finite Precision Logistic Map between Computational Efficiency and Accuracy with Encryption Applications," Complexity, Hindawi, vol. 2017, pages 1-21, February.
  • Handle: RePEc:hin:complx:8692046
    DOI: 10.1155/2017/8692046
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/8692046.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/8692046.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/8692046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Basalto, N. & Bellotti, R. & De Carlo, F. & Facchi, P. & Pascazio, S., 2005. "Clustering stock market companies via chaotic map synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 196-206.
    2. Kanso, Ali & Smaoui, Nejib, 2009. "Logistic chaotic maps for binary numbers generations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2557-2568.
    3. Persohn, K.J. & Povinelli, R.J., 2012. "Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 238-245.
    4. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elmanfaloty, Rania A. & Abou-Bakr, Ehab, 2019. "Random property enhancement of a 1D chaotic PRNG with finite precision implementation," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 134-144.
    2. Valle, João & Bruno, Odemir M., 2024. "Dynamics and patterns of the least significant digits of the infinite-arithmetic precision logistic map orbits," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Chunlei Fan & Qun Ding, 2019. "Effects of Limited Computational Precision on the Discrete Chaotic Sequences and the Design of Related Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, January.
    4. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    3. García Ruiz Reyna Susana & Cruz Aké Salvador & Venegas Martínez Francisco, 2014. "Una medida de eficiencia de mercado: Un enfoque de teoría de la información," Contaduría y Administración, Accounting and Management, vol. 59(4), pages 137-166, octubre-d.
    4. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    5. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    6. Evžen Kočenda, 1996. "Volatility of a Seemingly Fixed Exchange Rate," Eastern European Economics, Taylor & Francis Journals, vol. 34(6), pages 37-67, December.
    7. Benavides Guillermo, 2010. "Forecasting Short-Run Inflation Volatility using Futures Prices: An Empirical Analysis from a Value at Risk Perspective," Working Papers 2010-12, Banco de México.
    8. Arjen Hussem & Casper Ewijk & Harry Rele & Albert Wong, 2016. "The Ability to Pay for Long-Term Care in the Netherlands: A Life-cycle Perspective," De Economist, Springer, vol. 164(2), pages 209-234, June.
    9. Germán G. Creamer & Tal Ben-Zvi, 2021. "Volatility and Risk in the Energy Market: A Trade Network Approach," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    10. Evzen Kocenda & Lubos Briatka, 2004. "Advancing the iid Test Based on Integration across the Correlation Integral: Ranges, Competition, and Power," CERGE-EI Working Papers wp235, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    11. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    12. Jati Sengupta & Yijuan Zheng, 1997. "Estimating skewness persistence in market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(5), pages 549-558.
    13. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    14. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    15. Jianrong Wei & Jiping Huang, 2012. "An Exotic Long-Term Pattern in Stock Price Dynamics," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-5, December.
    16. Kian-Ping Lim & Hock-Ann Lee & Venus Khim-Sen Liew, 2003. "International Diversification Benefits in ASEAN Stock Markets: a Revisit," Finance 0308003, University Library of Munich, Germany.
    17. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    18. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    19. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    20. Takala, Kari & Virén, Matti, 1994. "Chaos and nonlinear dynamics : evidence from Finland," Research Discussion Papers 11/1994, Bank of Finland.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8692046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.