IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7835797.html
   My bibliography  Save this article

CoLR: Classification-Oriented Local Representation for Image Recognition

Author

Listed:
  • Tan Guo
  • Lei Zhang
  • Xiaoheng Tan
  • Liu Yang
  • Zhiwei Guo
  • Fupeng Wei

Abstract

Naïve sparse representation has stability problem due to its unsupervised nature, which is not preferred for classification tasks. For this problem, this paper presents a novel representation learning method named classification-oriented local representation (CoLR) for image recognition. The core idea of CoLR is to find the most relevant training classes and samples with test sample by taking the merits of class-wise sparseness weighting, sample locality, and label prior. The proposed representation strategy can not only promote a classification-oriented representation, but also boost a locality adaptive representation within the selected training classes. The CoLR model is efficiently solved by Augmented Lagrange Multiplier (ALM) scheme based on a variable splitting strategy. Then, the performance of the proposed model is evaluated on benchmark face datasets and deep object features. Specifically, the deep features of the object dataset are obtained by a well-trained convolutional neural network (CNN) with five convolutional layers and three fully connected layers on the challenging ImageNet. Extensive experiments verify the superiority of CoLR in comparison with some state-of-the-art models.

Suggested Citation

  • Tan Guo & Lei Zhang & Xiaoheng Tan & Liu Yang & Zhiwei Guo & Fupeng Wei, 2019. "CoLR: Classification-Oriented Local Representation for Image Recognition," Complexity, Hindawi, vol. 2019, pages 1-17, June.
  • Handle: RePEc:hin:complx:7835797
    DOI: 10.1155/2019/7835797
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7835797.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7835797.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7835797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    3. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    4. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    5. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    6. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    7. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    9. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    10. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    11. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    12. Jingxuan Luo & Xuejiao Li & Chongxiu Yu & Gaorong Li, 2023. "Multiclass Sparse Discriminant Analysis Incorporating Graphical Structure Among Predictors," Journal of Classification, Springer;The Classification Society, vol. 40(3), pages 614-637, November.
    13. He Jiang, 2023. "Robust forecasting in spatial autoregressive model with total variation regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 195-211, March.
    14. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    15. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    16. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    17. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    18. Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2019. "Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting," Journal of Labor Economics, University of Chicago Press, vol. 37(S1), pages 11-83.
    19. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    20. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7835797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.