IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7242791.html
   My bibliography  Save this article

Secure Communication of Fractional Complex Chaotic Systems Based on Fractional Difference Function Synchronization

Author

Listed:
  • Jiaxun Liu
  • Zuoxun Wang
  • Minglei Shu
  • Fangfang Zhang
  • Sen Leng
  • Xiaohui Sun

Abstract

Fractional complex chaotic systems have attracted great interest recently. However, most of scholars adopted integer real chaotic system and fractional real and integer complex chaotic systems to improve the security of communication. In this paper, the advantages of fractional complex chaotic synchronization ( FCCS ) in secure communication are firstly demonstrated. To begin with, we propose the definition of fractional difference function synchronization ( FDFS ) according to difference function synchronization ( DFS ) of integer complex chaotic systems. FDFS makes communication secure based on FCCS possible. Then we design corresponding controller and present a general communication scheme based on FDFS . Finally, we respectively accomplish simulations which transmit analog signal, digital signal, voice signal, and image signal. Especially for image signal, we give a novel image cryptosystem based on FDFS . The results demonstrate the superiority and good performances of FDFS in secure communication.

Suggested Citation

  • Jiaxun Liu & Zuoxun Wang & Minglei Shu & Fangfang Zhang & Sen Leng & Xiaohui Sun, 2019. "Secure Communication of Fractional Complex Chaotic Systems Based on Fractional Difference Function Synchronization," Complexity, Hindawi, vol. 2019, pages 1-10, August.
  • Handle: RePEc:hin:complx:7242791
    DOI: 10.1155/2019/7242791
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7242791.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7242791.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7242791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    2. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Hsueh Lin & Chia-Wei Ho & Guo-Hsin Hu & Baswanth Sreeramaneni & Jun-Juh Yan, 2021. "Secure Data Transmission Based on Adaptive Chattering-Free Sliding Mode Synchronization of Unified Chaotic Systems," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    2. Pengyu Li & Juan Du & Shouliang Li & Yazhao Zheng & Bowen Jia, 2019. "The Synchronization of N Cascade-Coupled Chaotic Systems," Complexity, Hindawi, vol. 2019, pages 1-10, December.
    3. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Fangfang Zhang & Rui Gao & Zhe Huang & Cuimei Jiang & Yawen Chen & Haibo Zhang, 2022. "Complex Modified Projective Difference Function Synchronization of Coupled Complex Chaotic Systems for Secure Communication in WSNs," Mathematics, MDPI, vol. 10(7), pages 1-14, April.
    5. Liu, Jianjun & Zhai, Rui & Liu, Yuhan & Li, Wenliang & Wang, Bingzhe & Huang, Liyuan, 2021. "A quasi fractional order gradient descent method with adaptive stepsize and its application in system identification," Applied Mathematics and Computation, Elsevier, vol. 393(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    2. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    3. Mahmoud, Gamal M. & Mahmoud, Emad E. & Arafa, Ayman A., 2018. "Synchronization of time delay systems with non-diagonal complex scaling functions," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 86-95.
    4. Afzaal Mubashir Hayat & Muhammad Bilal Riaz & Muhammad Abbas & Moataz Alosaimi & Adil Jhangeer & Tahir Nazir, 2024. "Numerical Solution to the Time-Fractional Burgers–Huxley Equation Involving the Mittag-Leffler Function," Mathematics, MDPI, vol. 12(13), pages 1-22, July.
    5. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    6. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    7. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Dynamic intersectoral models with power-law memory," Papers 1712.09087, arXiv.org.
    8. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    9. Zuoxun Wang & Wenzhu Zhang & Lei Ma & Guijuan Wang, 2022. "Several Control Problems of a Class of Complex Nonlinear Systems Based on UDE," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    10. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    11. Guo, Feng & Wang, Xue-yuan & Qin, Ming-wei & Luo, Xiang-dong & Wang, Jian-wei, 2021. "Resonance phenomenon for a nonlinear system with fractional derivative subject to multiplicative and additive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    12. Nian, Fuzhong & Liu, Xinmeng & Zhang, Yaqiong, 2018. "Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 22-28.
    13. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    14. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    15. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    16. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    17. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    18. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaos in a new system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1203-1212.
    19. Omar Kahouli & Assaad Jmal & Omar Naifar & Abdelhameed M. Nagy & Abdellatif Ben Makhlouf, 2022. "New Result for the Analysis of Katugampola Fractional-Order Systems—Application to Identification Problems," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    20. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7242791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.