IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4832740.html
   My bibliography  Save this article

Distributed Sequential Consensus in Networks: Analysis of Partially Connected Blockchains with Uncertainty

Author

Listed:
  • Francisco Prieto-Castrillo
  • Sergii Kushch
  • Juan Manuel Corchado

Abstract

This work presents a theoretical and numerical analysis of the conditions under which distributed sequential consensus is possible when the state of a portion of nodes in a network is perturbed. Specifically, it examines the consensus level of partially connected blockchains under failure/attack events. To this end, we developed stochastic models for both verification probability once an error is detected and network breakdown when consensus is not possible. Through a mean field approximation for network degree we derive analytical solutions for the average network consensus in the large graph size thermodynamic limit. The resulting expressions allow us to derive connectivity thresholds above which networks can tolerate an attack.

Suggested Citation

  • Francisco Prieto-Castrillo & Sergii Kushch & Juan Manuel Corchado, 2017. "Distributed Sequential Consensus in Networks: Analysis of Partially Connected Blockchains with Uncertainty," Complexity, Hindawi, vol. 2017, pages 1-11, November.
  • Handle: RePEc:hin:complx:4832740
    DOI: 10.1155/2017/4832740
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/4832740.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/4832740.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4832740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Keqiang & Zhang, Hong & Gao, You, 2017. "Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 363-369.
    2. Wang, Wei & Cai, Meng & Zheng, Muhua, 2018. "Social contagions on correlated multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 121-128.
    3. Bokwon Lee & Kyu-Min Lee & Jae-Suk Yang, 2019. "Network structure reveals patterns of legal complexity in human society: The case of the Constitutional legal network," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    4. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    5. repec:plo:pone00:0008001 is not listed on IDEAS
    6. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    7. Sergi Lozano & Alexandre Arenas, 2007. "A Model to Test How Diversity Affects Resilience in Regional Innovation Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-8.
    8. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    9. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    10. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    11. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    12. Stefano Martinazzi & Andrea Flori, 2020. "The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    13. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    14. Aleja, D. & Contreras-Aso, G. & Alfaro-Bittner, K. & Primo, E. & Criado, R. & Romance, M. & Boccaletti, S., 2022. "A compartmental model for cyber-epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Yicheol Han & Stephan J Goetz, 2019. "Measuring network rewiring over time," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    16. Mao, Liang & Yang, Yan, 2012. "Coupling infectious diseases, human preventive behavior, and networks – A conceptual framework for epidemic modeling," Social Science & Medicine, Elsevier, vol. 74(2), pages 167-175.
    17. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    18. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    19. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    20. Ixandra Achitouv, 2025. "Dynamical analysis of financial stocks network: Improving forecasting using network properties," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-23, May.
    21. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4832740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.