IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3942723.html
   My bibliography  Save this article

An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO

Author

Listed:
  • Xiaofeng Lv
  • Deyun Zhou
  • Yongchuan Tang
  • Ling Ma

Abstract

Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR) and fault isolation rate (FIR). From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO) algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

Suggested Citation

  • Xiaofeng Lv & Deyun Zhou & Yongchuan Tang & Ling Ma, 2018. "An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO," Complexity, Hindawi, vol. 2018, pages 1-10, January.
  • Handle: RePEc:hin:complx:3942723
    DOI: 10.1155/2018/3942723
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/3942723.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/3942723.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3942723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoge Zhang & Felix T.S. Chan & Andrew Adamatzky & Sankaran Mahadevan & Hai Yang & Zili Zhang & Yong Deng, 2017. "An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 244-263, January.
    2. Sen Deng & Bo Jing & Hongliang Zhou, 2017. "Heuristic particle swarm optimization approach for test point selection with imperfect test," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 37-50, January.
    3. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    4. Kumar Mahesh & Perumal Nallagownden & Irraivan Elamvazuthi, 2016. "Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation," Energies, MDPI, vol. 9(12), pages 1-23, November.
    5. Xiaoge Zhang & Andrew Adamatzky & Felix T. S. Chan & Sankaran Mahadevan & Yong Deng, 2017. "Physarum solver: a bio-inspired method for sustainable supply chain network design problem," Annals of Operations Research, Springer, vol. 254(1), pages 533-552, July.
    6. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    7. Cui, Yiqian & Shi, Junyou & Wang, Zili, 2015. "An analytical model of electronic fault diagnosis on extension of the dependency theory," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 192-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Heng & Duan, Fuhai & Fan, Liang & Sang, Yong, 2019. "Novel solution for sequential fault diagnosis based on a growing algorithm," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Wang, Jingyuan & Liu, Zhen & Wang, Jiahong & Long, Bing & Zhou, Xiuyun, 2022. "A general enhancement method for test strategy generation for the sequential fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Wang, Jingyuan & Liu, Zhen & Yao, Xutian & Wang, Yong & Li, Qi & Mi, Jinhua, 2025. "A sequential diagnostic strategy generation transformation method for large-scale systems based on multi-signal flow graph model and multi-objective optimization," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    4. Cem Işık & Ercan Sirakaya-Turk & Serdar Ongan, 2020. "Testing the efficacy of the economic policy uncertainty index on tourism demand in USMCA: Theory and evidence," Tourism Economics, , vol. 26(8), pages 1344-1357, December.
    5. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    6. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    7. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    8. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    9. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    10. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    11. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    12. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    13. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    14. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    15. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    16. K Echtle & I Eusgeld & D Hirsch, 2008. "Genetic multistart algorithm for the design of fault-tolerant systems," Journal of Risk and Reliability, , vol. 222(1), pages 17-29, March.
    17. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    18. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    19. Tarhan, İstenç & Zografos, Konstantinos G. & Sutanto, Juliana & Kheiri, Ahmed, 2024. "A quadrant shrinking heuristic for solving the dynamic multi-objective disaster response personnel routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 776-791.
    20. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3942723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.