IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p323-d91151.html
   My bibliography  Save this article

Effectiveness Evaluation for a Commercialized PV-Assisted Charging Station

Author

Listed:
  • Nian Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Minyang Cheng

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

The Photovoltaic–assisted Charging Station (PVCS) is regarded as one of the most promising charging facilities for future electric vehicle (EV) energy supplementation. In this paper, the operation mode and profitability of a commercialized PVCS are analyzed under the energy policy of China. In order to evaluate the long-term effectiveness of using the PVCS to provide guidance for the investors of the stations, a set of evaluation indexes is introduced, including the quality of service, the environmental and economic benefits, and the impacts on the grid. Furthermore, an easily-achieved charging strategy which considers the quality of service and the self-consumption of PV energy is proposed. Finally, an effectiveness evaluation for different operational scenarios of the PVCS is completed, based on the actual statistical data. The simulation and evaluation results indicate that the PVCS has the potential to produce satisfactory environmental/economic benefits and to reduce the impacts and dependence of an EV’s charging load on the grid.

Suggested Citation

  • Nian Liu & Minyang Cheng, 2017. "Effectiveness Evaluation for a Commercialized PV-Assisted Charging Station," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:323-:d:91151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Hengbing & Burke, Andrew, 2015. "Evaluation of a PV Powered EV Charging Station and its Buffer Battery," Institute of Transportation Studies, Working Paper Series qt1zv0918t, Institute of Transportation Studies, UC Davis.
    2. Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
    3. Zhao, Hengbing & Burke, Andrew, 2014. "An Intelligent Solar-Powered Battery-Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions," Institute of Transportation Studies, Working Paper Series qt3q74z6m1, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    2. Nian Liu & Minyang Cheng & Li Ma, 2017. "Multi-Party Energy Management for Networks of PV-Assisted Charging Stations: A Game Theoretical Approach," Energies, MDPI, vol. 10(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxia Liu & Shuya Niu & Huiting Xu & Xiaoying Li, 2016. "A New Method to Plan the Capacity and Location of Battery Swapping Station for Electric Vehicle Considering Demand Side Management," Sustainability, MDPI, vol. 8(6), pages 1-17, June.
    2. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    3. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    4. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    5. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    6. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    7. Tomasz Binkowski, 2021. "Fuzzy Logic Based Synchronization Method for Solar Powered High Frequency On-Board Grid," Energies, MDPI, vol. 14(24), pages 1-19, December.
    8. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    9. Tomasz Binkowski, 2020. "A Conductance-Based MPPT Method with Reduced Impact of the Voltage Ripple for One-Phase Solar Powered Vehicle or Aircraft Systems," Energies, MDPI, vol. 13(6), pages 1-17, March.
    10. Quddus, Md Abdul & Kabli, Mohannad & Marufuzzaman, Mohammad, 2019. "Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 251-279.
    11. Peter Haidl & Armin Buchroithner & Bernhard Schweighofer & Michael Bader & Hannes Wegleiter, 2019. "Lifetime Analysis of Energy Storage Systems for Sustainable Transportation," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    12. Nian Liu & Minyang Cheng & Li Ma, 2017. "Multi-Party Energy Management for Networks of PV-Assisted Charging Stations: A Game Theoretical Approach," Energies, MDPI, vol. 10(7), pages 1-16, July.
    13. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    14. Yang, Libing & Ribberink, Hajo, 2019. "Investigation of the potential to improve DC fast charging station economics by integrating photovoltaic power generation and/or local battery energy storage system," Energy, Elsevier, vol. 167(C), pages 246-259.
    15. Nan Zhou & Nian Liu & Jianhua Zhang & Jinyong Lei, 2016. "Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response," Energies, MDPI, vol. 9(8), pages 1-24, July.
    16. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
    17. Zhao, Hengbing & Burke, Andrew, 2015. "Evaluation of a PV Powered EV Charging Station and its Buffer Battery," Institute of Transportation Studies, Working Paper Series qt1zv0918t, Institute of Transportation Studies, UC Davis.
    18. Feng, Jiawei & Hou, Shengya & Yu, Lijun & Dimov, Nikolay & Zheng, Pei & Wang, Chunping, 2020. "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging," Applied Energy, Elsevier, vol. 264(C).
    19. Wenxiang Li & Ye Li & Haopeng Deng & Lei Bao, 2018. "Planning of Electric Public Transport System under Battery Swap Mode," Sustainability, MDPI, vol. 10(7), pages 1-17, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:323-:d:91151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.