Author
Listed:
- Nishan Adhikari
(Department of Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV 26505, USA)
- Hailin Li
(Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV 26505, USA)
- Bhaskaran Gopalakrishnan
(Department of Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV 26505, USA)
Abstract
The Paris Agreement’s pressing global mandate to limit global warming to 1.5 degrees Celsius above pre-industrial levels by 2030 has placed immense pressure on energy-consuming industries and businesses to deploy robust, advanced, and accurate monitoring and tracking of carbon footprints. This critical issue is examined through a systematic review of English-language studies (2015–2024) retrieved from three leading databases: Scopus ( n = 1528), Web of Science ( n = 1152), and GreenFILE ( n = 271). The selected literature collectively highlights key carbon footprint tracking methods. The resulting dataset is subjected to bibliometric and scientometric analysis after refinement through deduplication and screening, based on the PRISMA framework. Methodologically, the analysis integrated the following: (1) evaluating long-term trends via the Mann–Kendall and Hurst exponent tests; (2) exploring keywords and country-based contributions using VOSviewer (v1.6.20); (3) applying Bradford’s law of scattering and Leimkuhler’s model; and (4) investigating authorship patterns and networks through Biblioshiny (v4.3.0). Further, based on eligibility criteria, 35 papers were comprehensively reviewed to investigate the emerging carbon footprint tracking technologies such as life cycle assessment (LCA), machine learning (ML), artificial intelligence (AI), blockchain, and data analytics. This study identified three main challenges: (a) lack of industry-wide standards and approaches; (b) real-time tracking of dynamic emissions using LCA; and (c) need for robust frameworks for interoperability of these technologies. Overall, our systematic review identifies the current state and trends of technologies and tools used in carbon emissions tracking in cross-sectors such as industries, buildings, construction, and transportation and provides valuable insights for industry practitioners, researchers, and policymakers to develop uniform, integrated, scalable, and compliant carbon tracking systems and support the global shift to a low-carbon and sustainable economy.
Suggested Citation
Nishan Adhikari & Hailin Li & Bhaskaran Gopalakrishnan, 2025.
"A Bibliometric and Systematic Review of Carbon Footprint Tracking in Cross-Sector Industries: Emerging Tools and Technologies,"
Sustainability, MDPI, vol. 17(9), pages 1-30, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:9:p:4205-:d:1650330
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4205-:d:1650330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.