IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3242-d1628660.html
   My bibliography  Save this article

Enhancing Groundwater Recharge Assessment in Mediterranean Regions: A Comparative Study Using Analytical Hierarchy Process and Fuzzy Analytical Hierarchy Process Integrated with Geographic Information Systems for the Algiers Watershed

Author

Listed:
  • Farouk Mezali

    (Water Sciences Research Laboratory: LRS-Eau, National Polytechnic School, Algiers 16200, Algeria
    Laboratory of Water, Environment, and Renewable Energies, Hydraulic Department, Faculty of Technology, University of M’sila, M’sila 28000, Algeria)

  • Meriem Chetibi

    (Water Sciences Research Laboratory: LRS-Eau, National Polytechnic School, Algiers 16200, Algeria)

  • Khatir Naima

    (Energy and Environment Laboratory, Department of Mechanical Engineering, Institute of Technology, University Center Salhi Ahmed Naama (Ctr. University Naama), P.O. Box 66, Naama 45000, Algeria)

  • Abdessamed Derdour

    (Artificial Intelligence Laboratory for Mechanical and Civil Structures and Soil, University Center of Naama, P.O. Box 66, Naama 45000, Algeria)

  • Saida Benmamar

    (Water Sciences Research Laboratory: LRS-Eau, National Polytechnic School, Algiers 16200, Algeria)

  • Hussein Almohamad

    (Department of Geography, College of Languages and Human Sciences, Qassim University, Buraydah 51452, Saudi Arabia)

  • Fahdah Falah ben Hasher

    (Department of Geography and Environmental Sustainability, College of Humanities and Social Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Hazem Ghassan Abdo

    (Geography Department, Faculty of Arts and Humanities, Tartous University, Tartous P.O. Box 2147, Syria)

Abstract

Groundwater recharge is critical for sustainable water management in water-scarce regions like North Algeria, where climate change and urbanization exacerbate resource challenges, particularly in the populous Algiers watershed. This study evaluates groundwater recharge potential using the Analytical Hierarchy Process (AHP) and its fuzzy extension (FAHP), integrated with Geographic Information Systems (GIS), to map recharge zones. Employing open-source data, AHP and FAHP assessed factors such as lithology, slope, and rainfall, classifying the watershed into high, moderate, and low recharge potential zones. Results show AHP identifying 44.01% (528.95 km 2 ) as high, 52.82% (634.93 km 2 ) as moderate, and 3.18% (38.14 km 2 ) as low potential, with FAHP yielding similar outcomes (44.35%, 52.47%, and 3.17%, respectively). Validation using borehole drawdown data confirmed a 73.3% accuracy and an AUC of 0.72, indicating moderate to good reliability. High recharge zones were concentrated in the central and northern areas with permeable soils and gentle slopes, moderate zones dominated the region, and low zones were minimal. This study concludes that both AHP and FAHP are effective for preliminary recharge assessments, with AHP favored for its simplicity, though FAHP excels with uncertain data. Limited high-resolution hydrogeological data highlight the need for further refinement, yet the approach offers a replicable framework for managing groundwater in arid, urbanized regions facing similar environmental pressures.

Suggested Citation

  • Farouk Mezali & Meriem Chetibi & Khatir Naima & Abdessamed Derdour & Saida Benmamar & Hussein Almohamad & Fahdah Falah ben Hasher & Hazem Ghassan Abdo, 2025. "Enhancing Groundwater Recharge Assessment in Mediterranean Regions: A Comparative Study Using Analytical Hierarchy Process and Fuzzy Analytical Hierarchy Process Integrated with Geographic Information," Sustainability, MDPI, vol. 17(7), pages 1-36, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3242-:d:1628660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tayyib Moussaoui & Abdessamed Derdour & Alia Hosni & Manuel Ballesta-de los Santos & Pilar Legua & Miguel Ángel Pardo-Picazo, 2023. "Assessing the Quality of Treated Wastewater for Irrigation: A Case Study of Ain Sefra Wastewater Treatment Plant," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Mzwakhile Petros Zakhe Simelane & Puffy Soundy & Martin Makgose Maboko, 2024. "Effects of Rainfall Intensity and Slope on Infiltration Rate, Soil Losses, Runoff and Nitrogen Leaching from Different Nitrogen Sources with a Rainfall Simulator," Sustainability, MDPI, vol. 16(11), pages 1-14, May.
    3. Yangli Zhang & Qiang Fan, 2020. "The Application of the Fuzzy Analytic Hierarchy Process in the Assessment and Improvement of the Human Settlement Environment," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    5. Rakan Alyamani & Suzanna Long, 2020. "The Application of Fuzzy Analytic Hierarchy Process in Sustainable Project Selection," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    6. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, June.
    7. Abdessamed Derdour & Abderrazak Bouanani & Noureddine Kaid & Kanit Mukdasai & A. M. Algelany & Hijaz Ahmad & Younes Menni & Houari Ameur, 2022. "Groundwater Potentiality Assessment of Ain Sefra Region in Upper Wadi Namous Basin, Algeria Using Integrated Geospatial Approaches," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    8. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liquete, Camino & Udias, Angel & Conte, Giulio & Grizzetti, Bruna & Masi, Fabio, 2016. "Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits," Ecosystem Services, Elsevier, vol. 22(PB), pages 392-401.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Martina Artmann, 2013. "Response-Efficiency-Assessment: A Conceptual Framework For Rating Policy'S Efficiency To Meet Sustainable Development On The Example Of Soil Sealing Management," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33.
    4. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    5. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    6. Saeid Ghafoori & Hossein Hassanpour Darvishi & Hossein Mohamadvali Samani & Pezhman Taherei Ghazvinei, 2021. "Enhancing the Method of Decentralized Multi-Purpose Reuse of Wastewater in Urban Area," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    7. Tayyib Moussaoui & Abdessamed Derdour & Alia Hosni & Manuel Ballesta-de los Santos & Pilar Legua & Miguel Ángel Pardo-Picazo, 2023. "Assessing the Quality of Treated Wastewater for Irrigation: A Case Study of Ain Sefra Wastewater Treatment Plant," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    8. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    9. Madson Bruno da Silva Monte & Danielle Costa Morais, 2019. "A Decision Model for Identifying and Solving Problems in an Urban Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4835-4848, November.
    10. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    11. Gözaçan Nazlıcan & Lafci Çisem, 2020. "Evaluation of Key Performance Indicators of Logistics Firms," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 24-32, February.
    12. Burak, Selmin & Samanlioglu, Funda & Ulker, Duygu & Kup, Eyup Tolunay, 2024. "Ranking willingness to reuse water in cotton irrigation with hybrid MCDM methods: Soke plain case study," Agricultural Water Management, Elsevier, vol. 301(C).
    13. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    14. Jiabin Liu & Ji Han, 2017. "Does a Certain Rule Exist in the Long-Term Change of a City’s Livability? Evidence from New York, Tokyo, and Shanghai," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    15. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    16. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    17. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
    18. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    19. Cindy Córdoba & Catalina Triviño & Javier Toro Calderón, 2020. "Agroecosystem resilience. A conceptual and methodological framework for evaluation," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    20. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3242-:d:1628660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.