IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2454-d1609878.html
   My bibliography  Save this article

Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine

Author

Listed:
  • Farhat Nasim

    (Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India)

  • Shahida Khatoon

    (Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India)

  • Ibraheem

    (Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India)

  • Shabana Urooj

    (Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Mohammad Shahid

    (Department of Electrical Engineering, Galgotias College of Engineering and Technology, Greater Noida 201306, India)

  • Asmaa Ali

    (Optimized Computing and Communications Research Laboratory, Western University, London, ON N6A 3K7, Canada)

  • Nidal Nasser

    (College of Engineering, Alfaisal University, Riyadh 11533, Saudi Arabia)

Abstract

Wind energy is essential for promoting sustainability and renewable power solutions. However, ensuring stability and consistent performance in DFIG-based wind turbine systems (WTSs) remains challenging due to rapid wind speed variations, grid disturbances, and parameter uncertainties. These fluctuations result in power instability, increased overshoot, and prolonged settling times, negatively impacting grid compliance and system efficiency. Conventional proportional-integral (PI) controllers are simple and effective in steady-state conditions, but they lack adaptability in dynamic situations. Similarly, artificial intelligence (AI)-based controllers, such as fuzzy logic controllers (FLCs) and artificial neural networks (ANNs), improve adaptability but suffer from high computational demands and training complexity. To address these limitations, this paper presents a hybrid adaptive neuro-fuzzy inference system (ANFIS)-PI controller for DFIG-based WTS. The proposed controller integrates fuzzy logic adaptability with neural network-based learning, allowing real-time optimization of control parameters. Implemented within the rotor-side converter (RSC) and grid-side converter (GSC), ANFIS enhances reactive power management, grid compliance, and overall system stability. The system was tested under a step wind speed signal varying from 10 m/s to 12 m/s to evaluate its robustness. The simulation results confirmed that the ANFIS-PI controller significantly improved performance compared with the conventional PI controller. Specifically, it reduced rotor speed overshoot by 3%, torque overshoot by 12.5%, active power overshoot by 2%, and DC link voltage overshoot by 20%. Additionally, the ANFIS-PI controller shortened settling time by 50% for rotor speed, by 25% for torque, by 33% for active power, and by 16.7% for DC link voltage, ensuring faster stabilization, enhanced dynamic response, and greater efficiency. These improvements establish the ANFIS-PI controller as an advanced, computationally efficient, and scalable solution for enhancing the reliability of DFIG-based WTS, facilitating seamless integration of wind energy into modern power grids.

Suggested Citation

  • Farhat Nasim & Shahida Khatoon & Ibraheem & Shabana Urooj & Mohammad Shahid & Asmaa Ali & Nidal Nasser, 2025. "Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine," Sustainability, MDPI, vol. 17(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2454-:d:1609878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olympia Roeva & Dafina Zoteva & Gergana Roeva & Maya Ignatova & Velislava Lyubenova, 2024. "An Effective Hybrid Metaheuristic Approach Based on the Genetic Algorithm," Mathematics, MDPI, vol. 12(23), pages 1-16, December.
    2. Shuxin Liu & Jing Xu & Chaojian Xing & Yang Liu & Ersheng Tian & Jia Cui & Junzhu Wei, 2023. "Study on Dynamic Pricing Strategy for Industrial Power Users Considering Demand Response Differences in Master–Slave Game," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    3. Mateusz Malarczyk & Grzegorz Kaczmarczyk & Jaroslaw Szrek & Marcin Kaminski, 2023. "Internet of Robotic Things (IoRT) and Metaheuristic Optimization Techniques Applied for Wheel-Legged Robot," Future Internet, MDPI, vol. 15(9), pages 1-19, September.
    4. Mohammed Qasim Taha & Sefer Kurnaz, 2023. "Droop Control Optimization for Improved Power Sharing in AC Islanded Microgrids Based on Centripetal Force Gravity Search Algorithm," Energies, MDPI, vol. 16(24), pages 1-20, December.
    5. Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
    6. Zhe Wang & Jiali Duan & Fengzhang Luo & Xuan Wu, 2024. "Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage," Energies, MDPI, vol. 17(14), pages 1-22, July.
    7. Umar Draz & Tariq Ali & Sana Yasin & Muhammad Hasanain Chaudary & Muhammad Ayaz & El-Hadi M. Aggoune & Isha Yasin, 2024. "Hybridization and Optimization of Bio and Nature-Inspired Metaheuristic Techniques of Beacon Nodes Scheduling for Localization in Underwater IoT Networks," Mathematics, MDPI, vol. 12(22), pages 1-29, November.
    8. Muhammad Usman Riaz & Suheel Abdullah Malik & Amil Daraz & Hasan Alrajhi & Ahmed N. M. Alahmadi & Abdul Rahman Afzal, 2024. "Advanced Energy Management in a Sustainable Integrated Hybrid Power Network Using a Computational Intelligence Control Strategy," Energies, MDPI, vol. 17(20), pages 1-53, October.
    9. Mohammed Goda Eisa & Mohammed A. Farahat & Wael Abdelfattah & Mohammed Elsayed Lotfy, 2024. "Multi-Objective Optimal Integration of Distributed Generators into Distribution Networks Incorporated with Plug-In Electric Vehicles Using Walrus Optimization Algorithm," Sustainability, MDPI, vol. 16(22), pages 1-37, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2454-:d:1609878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.