Enhanced Fault Detection and Classification in AC Microgrids Through a Combination of Data Processing Techniques and Deep Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sirus Salehimehr & Seyed Mahdi Miraftabzadeh & Morris Brenna, 2024. "A Novel Machine Learning-Based Approach for Fault Detection and Location in Low-Voltage DC Microgrids," Sustainability, MDPI, vol. 16(7), pages 1-23, March.
- Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ming Li & Jin Ye, 2022. "Design and Implementation of Demand Side Response Based on Binomial Distribution," Energies, MDPI, vol. 15(22), pages 1-15, November.
- Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
- Mostafa Bakkar & Santiago Bogarra & Felipe Córcoles & Ahmed Aboelhassan & Shuo Wang & Javier Iglesias, 2022. "Artificial Intelligence-Based Protection for Smart Grids," Energies, MDPI, vol. 15(13), pages 1-18, July.
- Salima Abeid & Yanting Hu & Feras Alasali & Naser El-Naily, 2022. "Innovative Optimal Nonstandard Tripping Protection Scheme for Radial and Meshed Microgrid Systems," Energies, MDPI, vol. 15(14), pages 1-29, July.
- José Oliveira & Dioeliton Passos & Davi Carvalho & José F. V. Melo & Eraylson G. Silva & Paulo S. G. de Mattos Neto, 2024. "Improving Electrical Fault Detection Using Multiple Classifier Systems," Energies, MDPI, vol. 17(22), pages 1-26, November.
- Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
- Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
- Pascal Hategekimana & Adria Junyent Ferre & Joan Marc Rodriguez Bernuz & Etienne Ntagwirumugara, 2022. "Fault Detecting and Isolating Schemes in a Low-Voltage DC Microgrid Network from a Remote Village," Energies, MDPI, vol. 15(12), pages 1-16, June.
- Musfira Mehmood & Syed Basit Ali Bukhari & Abdullah Altamimi & Zafar A. Khan & Syed Ali Abbas Kazmi & Muhammad Yousif & Dong Ryeol Shin, 2022. "Microgrid Protection Using Magneto-Resistive Sensors and Superimposed Reactive Energy," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
- Aushiq Ali Memon & Kimmo Kauhaniemi, 2020. "An Adaptive Protection for Radial AC Microgrid Using IEC 61850 Communication Standard: Algorithm Proposal Using Offline Simulations," Energies, MDPI, vol. 13(20), pages 1-31, October.
- Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Mohammad A. Abido, 2021. "Islanding Detection Methods for Microgrids: A Comprehensive Review," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
- Shaheen Kousar & Nazir Ahmad Zafar & Tariq Ali & Eman H. Alkhammash & Myriam Hadjouni, 2022. "Formal Modeling of IoT-Based Distribution Management System for Smart Grids," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
- Mohsen Kandidayeni & Alvaro Macias & Loïc Boulon & João Pedro F. Trovão, 2020. "Online Modeling of a Fuel Cell System for an Energy Management Strategy Design," Energies, MDPI, vol. 13(14), pages 1-17, July.
More about this item
Keywords
CST; deep neural network; EV; fault classification; fault detection; microgrid; signal processing; VMD; wind;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1514-:d:1589507. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.