IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p443-d1562807.html
   My bibliography  Save this article

CARES Framework: A Circularity Assessment Method for Residential Building Structures

Author

Listed:
  • Alicia Vásquez-Cabrera

    (Departamento de Construcciones Arquitectónicas I, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Maria Victoria Montes

    (Departamento de Construcciones Arquitectónicas II, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Carmen Llatas

    (Departamento de Construcciones Arquitectónicas I, Universidad de Sevilla, 41012 Sevilla, Spain)

Abstract

The construction industry contributes to global waste through its “take-make-dispose” model. In response, the European Commission has developed Action Plans to promote a Circular Economy (CE). However, there is currently no standardised Circularity Indicator (CI). The main barrier thereof is the lack of consensus on assessment criteria, stemming from the dispersity of advancements among the methodologies available. The CARES Framework (CARES-F) has been designed to address this issue by integrating ISO standards, Level(s), and Life Cycle Assessment (LCA) criteria into the traditional MCI framework. This innovative framework also introduces further variables from the CE perspective, such as transport impact, biomaterials, and quantitative Key Performance Indicators (KPIs) for Design for Disassembly (DfD) and Design for Adaptability (DfA). The validation is carried out on a typical Spanish residential building structure by applying the CARES-F and two micro-CIs based on the MCI. The results exhibit the low circularity of resource-intensive systems and highlight the need for secondary raw material in flow, as well as DfA criteria. These findings underscore the significance of the introduced quantitative KPIs in the CIs accuracy and demonstrate the feasibility of the CARES-F in the identification of circularity gaps and selection of optimal circular design strategies from early project stages.

Suggested Citation

  • Alicia Vásquez-Cabrera & Maria Victoria Montes & Carmen Llatas, 2025. "CARES Framework: A Circularity Assessment Method for Residential Building Structures," Sustainability, MDPI, vol. 17(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:443-:d:1562807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    2. Marcus Linder & Steven Sarasini & Patricia Loon, 2017. "A Metric for Quantifying Product-Level Circularity," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 545-558, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Samberger & Sanaz Imen & Katerina Messologitis & Arthur Umble & Joseph G. Jacangelo, 2024. "Assessing circularity of wastewater treatment systems: A critical review of indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 262-276, April.
    2. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    3. Skare, Marinko & Gavurova, Beata & Kovac, Viliam, 2024. "Mitigating resource curse impact through implementing circular economy effective strategies," Resources Policy, Elsevier, vol. 92(C).
    4. Meleddu, Marta & Vecco, Marilena & Mazzanti, Massimiliano, 2024. "The Role of Voluntary Environmental Policies Towards Achieving Circularity," Ecological Economics, Elsevier, vol. 219(C).
    5. Animesh Ghosh & Prabha Bhola & Uthayasankar Sivarajah, 2022. "Emerging Associates of the Circular Economy: Analysing Interactions and Trends by a Mixed Methods Systematic Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    6. Robert H. W. Boyer & Ann‐Charlotte Mellquist & Mats Williander & Sara Fallahi & Thomas Nyström & Marcus Linder & Peter Algurén & Emanuela Vanacore & Agnieszka D. Hunka & Emma Rex & Katherine A. Whalen, 2021. "Three‐dimensional product circularity," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 824-833, August.
    7. Alexandra Barón Dorado & Gerusa Giménez Leal & Rodolfo de Castro Vila, 2022. "Environmental policy and corporate sustainability: The mediating role of environmental management systems in circular economy adoption," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 830-842, July.
    8. Pablo Piñones & Ivan Derpich & Ricardo Venegas, 2023. "Circular Economy 4.0 Evaluation Model for Urban Road Infrastructure Projects, CIROAD," Sustainability, MDPI, vol. 15(4), pages 1-32, February.
    9. Gloria Claudio‐Quiroga & Carlos Poza, 2024. "Measuring the circular economy in Europe: Big differences among countries, great opportunities to converge," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 4707-4725, October.
    10. Roxana Lavinia Pacurariu & Sorin Daniel Vatca & Elena Simina Lakatos & Laura Bacali & Mircea Vlad, 2021. "A Critical Review of EU Key Indicators for the Transition to the Circular Economy," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
    11. Anna Luthin & Marzia Traverso & Robert H. Crawford, 2024. "Circular life cycle sustainability assessment: An integrated framework," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 41-58, February.
    12. Vincenzo Basile & Nunzia Petacca & Roberto Vona, 2024. "Measuring Circularity in Life Cycle Management: A Literature Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 25(3), pages 419-443, September.
    13. Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
    14. Luis Diaz‐Balteiro & Carlos Romero & Silvestre García de Jalón, 2022. "An analysis of the degree of circularity of the wood products industry in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1350-1363, August.
    15. Mustapha Hrouga & Stephnaie Michel, 2023. "Towards a new supply chain manager dashboard under circular economy constraints: A case study on France textile and clothing industry," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 6074-6093, December.
    16. Buddhika M. Hapuwatte & I. S. Jawahir, 2021. "Closed‐loop sustainable product design for circular economy," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1430-1446, December.
    17. A. Kulakovskaya & C. Knoeri & F. Radke & N. U. Blum, 2023. "Measuring the Economic Impacts of a Circular Economy: an Evaluation of Indicators," Circular Economy and Sustainability, Springer, vol. 3(2), pages 657-692, June.
    18. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes, 2024. "Viability of sustainable logistics practices enabling circular economy: A system dynamics approach," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3422-3439, May.
    19. Benedetta Esposito & Nicola Raimo & Ornella Malandrino & Filippo Vitolla, 2023. "Circular economy disclosure and integrated reporting: The role of corporate governance mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5403-5419, December.
    20. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:443-:d:1562807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.