Author
Listed:
- Zhe Wee Ng
(Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA)
- Biswajit Debnath
(School of Sustainability, New Age Makers’ Institute of Technology, NAMTECH, Gandhinagar 382055, Gujarat, India)
- Amit K Chattopadhyay
(School of Business, National College of Ireland, D01 K6W2 Dublin, Ireland)
Abstract
Electronic-waste (e-waste) management is a key challenge in engineering smart cities due to its rapid accumulation, complex composition, sparse data availability, and significant environmental and economic impacts. This study employs a bespoke machine learning infrastructure on an Indian e-waste supply chain network (SCN) focusing on the three pillars of sustainability—environmental, economic, and social. The economic resilience of the SCN is investigated against external perturbations, like market fluctuations or policy changes, by analyzing six stochastically perturbed modules, generated from the optimal point of the original dataset using Monte Carlo Simulation (MCS). In the process, MCS is demonstrated as a powerful technique to deal with sparse statistics in SCN modeling. The perturbed model is then analyzed to uncover “hidden” non-linear relationships between key variables and their sensitivity in dictating economic arbitrage. Two complementary ensemble-based approaches have been used—Feedforward Neural Network (FNN) model and Random Forest (RF) model. While FNN excels in regressing the model performance against the industry-specified target, RF is better in dealing with feature engineering and dimensional reduction, thus identifying the most influential variables. Our results demonstrate that the FNN model is a superior predictor of arbitrage conditions compared to the RF model. The tangible deliverable is a data-driven toolkit for smart engineering solutions to ensure sustainable e-waste management.
Suggested Citation
Zhe Wee Ng & Biswajit Debnath & Amit K Chattopadhyay, 2025.
"Machine Learning-Aided Supply Chain Analysis of Waste Management Systems: System Optimization for Sustainable Production,"
Sustainability, MDPI, vol. 17(19), pages 1-24, October.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:19:p:8848-:d:1764047
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8848-:d:1764047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.