IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6871-d1712208.html
   My bibliography  Save this article

Optimization of Mining Sequence for Ion-Adsorbed Rare Earth Mining Districts Incorporating Environmental Costs

Author

Listed:
  • Lu Yi

    (School of Economics and Management, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Yi Zeng

    (School of Economics and Management, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Minggui Zheng

    (School of Economics and Management, Jiangxi University of Science and Technology, Ganzhou 341000, China
    School of Management, University of Science and Technology of China, Hefei 230026, China)

Abstract

The mining sequence of ionic rare earth mineral mining districts is related to the effective utilization of rare earth mineral resources and the protection of ecological environment. This study establishes an optimization model for the mining sequence of ion-adsorption rare earth mining districts that incorporates environmental costs, using the net present value (NPV) of the mining district and the net present value of environmental costs (C E ) as objective functions. The model is applied to optimize the mining sequence of Mining District L. The results demonstrate that (1) Four algorithms, namely NSGA-II, NSGA-III, IBEA, and MOEA/D, were selected for comparison. The analysis based on the distribution of solutions, hypervolume values (HV), and computational time revealed that the IBEA exhibited superior performance. (2) The IBEA was employed to solve the multi-objective optimization problem, yielding a set of 30 optimal solutions. Different NPVs corresponded to different C E values, with the C E value increasing correspondingly as the NPV increased. (3) The weighted method was employed to transform the multi-objective optimization problem into a single-objective formulation. Using a genetic algorithm (GA), the optimal solution yielded a decision variable sequence for mining order as [2, 5, 8, 4, 1, 9, 6, 7, 3, 10, 11], with the net present value (NPV) of mining district profits reaching CNY 76,640.65 million and the environmental cost NPV amounting to CNY 19,469.18 million. Compared with the mining sequence optimization scheme that did not consider C E , although the NPV decreased by CNY 3.3266 million, the C E was reduced by CNY 10.6993 million. The mining sequence optimization model with environmental costs constructed in this paper provides a scientific decision-making basis for mining enterprises to consider the mining sequence in mining districts, minimize the damage to the ecological environment, and promote the coordinated progress of resource development and sustainable development.

Suggested Citation

  • Lu Yi & Yi Zeng & Minggui Zheng, 2025. "Optimization of Mining Sequence for Ion-Adsorbed Rare Earth Mining Districts Incorporating Environmental Costs," Sustainability, MDPI, vol. 17(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6871-:d:1712208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haibo Guan & Yanjun Mu & Rutao Song & Yuecen Lan & Xiongfeng Du & Jinxia Li & Wenfeng Chi & Weiguo Sang, 2022. "Soil Microbial Communities in Desert Grassland around Rare Earth Mine: Diversity, Variation, and Response Patterns," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    2. Barteková, Eva & Kemp, René, 2016. "National strategies for securing a stable supply of rare earths in different world regions," Resources Policy, Elsevier, vol. 49(C), pages 153-164.
    3. Xuedong Liang & Meng Ye & Li Yang & Wanbing Fu & Zhi Li, 2018. "Evaluation and Policy Research on the Sustainable Development of China’s Rare Earth Resources," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).
    2. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    3. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    4. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    5. Francesco Ferella & Idiano D’Adamo & Simona Leone & Valentina Innocenzi & Ida De Michelis & Francesco Vegliò, 2018. "Spent FCC E-Cat: Towards a Circular Approach in the Oil Refining Industry," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    6. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    7. Huang, Xiaobing & Xie, Jiawei, 2024. "The impact of input efficiency on the value chain embeddedness of rare earth enterprises," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 604-616.
    8. Jianyun Chen & Wenxing Zhu & Xianping Luo, 2022. "Government Reserve of Rare Earths under Total Quota Management: An Interactive Game between Government and Rare-Earth Firms," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    9. Elisa Alonso & David G. Pineault & Joseph Gambogi & Nedal T. Nassar, 2023. "Mapping first to final uses for rare earth elements, globally and in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 312-322, February.
    10. Koyamparambath, Anish & Santillán-Saldivar, Jair & McLellan, Benjamin & Sonnemann, Guido, 2022. "Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018)," Resources Policy, Elsevier, vol. 75(C).
    11. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    12. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    13. Weiser, Annika & Bickel, Manuel W. & Kümmerer, Klaus & Lang, Daniel J., 2020. "Towards a more sustainable metal use – Lessons learned from national strategy documents," Resources Policy, Elsevier, vol. 68(C).
    14. Priore, Riccardo & Compagnoni, Marco & Favot, Marinella, 2025. "Innovation in rare earths recycling: A quantitative and qualitative analysis of patent data," Resources Policy, Elsevier, vol. 102(C).
    15. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    16. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    17. Considine, Jennifer & Galkin, Phillip & Hatipoglu, Emre & Aldayel, Abdullah, 2023. "The effects of a shock to critical minerals prices on the world oil price and inflation," Energy Economics, Elsevier, vol. 127(PB).
    18. Barbara Bielowicz, 2025. "Waste as a Source of Critical Raw Materials—A New Approach in the Context of Energy Transition," Energies, MDPI, vol. 18(8), pages 1-21, April.
    19. Ewa Lewicka & Katarzyna Guzik & Krzysztof Galos, 2021. "On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources," Resources, MDPI, vol. 10(5), pages 1-21, May.
    20. Leng, Zhihui & Sun, Han & Cheng, Jinhua & Wang, Hai & Yao, Zhen, 2021. "China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents," Resources Policy, Elsevier, vol. 73(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6871-:d:1712208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.