IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6157-d1695018.html
   My bibliography  Save this article

Modeling Sustainable Economic Decisions Under Uncertainty: A Robust Optimization Framework via Nonlinear Scalarization

Author

Listed:
  • Florentin Șerban

    (Department of Applied Mathematics, Bucharest University of Economic Studies, 010374 Bucharest, Romania)

  • Silvia Dedu

    (Department of Applied Mathematics, Bucharest University of Economic Studies, 010374 Bucharest, Romania
    “Costin C. Kiriţescu” National Institute of Economic Research, 050711 Bucharest, Romania)

Abstract

Sustainable economic decision making increasingly requires robust methodologies capable of withstanding deep uncertainty, particularly in volatile financial and resource-constrained environments. This paper introduces a unified optimization framework based on nonlinear scalarizing functionals, designed to support resilient planning under structural ambiguity. By integrating performance objectives with risk boundaries, the proposed model generalizes classical robustness paradigms—such as strict and reliable robustness—into a single tractable and economically interpretable formulation. A key innovation lies in translating scenario-based uncertainty into a directional performance index, aligned with stakeholder-defined sustainability criteria and encoded via a preference vector k . This scalarization approach supports behaviorally consistent and computationally efficient decision-making even in the absence of complete probabilistic information. A case study in multi-scenario portfolio allocation demonstrates the model’s capacity to maintain return stability while respecting predefined risk tolerances. Computational benchmarks confirm the framework’s scalability to larger problem instances, validating its practical applicability. Beyond financial applications, the model also holds promise for sustainable policy design, infrastructure planning, and resource allocation under deep uncertainty. This work contributes to bridging the gap between abstract optimization theory and applied sustainability challenges, offering a robust and adaptive decision-support tool for real-world implementation.

Suggested Citation

  • Florentin Șerban & Silvia Dedu, 2025. "Modeling Sustainable Economic Decisions Under Uncertainty: A Robust Optimization Framework via Nonlinear Scalarization," Sustainability, MDPI, vol. 17(13), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6157-:d:1695018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    4. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    5. Pablo Flores-Siguenza & Jose Antonio Marmolejo-Saucedo & Joaquina Niembro-Garcia, 2023. "Robust Optimization Model for Sustainable Supply Chain Design Integrating LCA," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Ben-Tal, A. & den Hertog, D. & Vial, J.P., 2012. "Deriving Robust Counterparts of Nonlinear Uncertain Inequalities," Discussion Paper 2012-053, Tilburg University, Center for Economic Research.
    3. Ben-Tal, A. & den Hertog, D. & Vial, J.P., 2012. "Deriving Robust Counterparts of Nonlinear Uncertain Inequalities," Other publications TiSEM 130bc0dc-cebe-40dc-8da9-a, Tilburg University, School of Economics and Management.
    4. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    5. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    6. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    7. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    8. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    9. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    10. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    11. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    12. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    13. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    14. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    15. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    16. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    17. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    18. Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
    19. Aharon Ben-Tal & Ruud Brekelmans & Dick den Hertog & Jean-Philippe Vial, 2017. "Globalized Robust Optimization for Nonlinear Uncertain Inequalities," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 350-366, May.
    20. Ahmadreza Marandi & Aharon Ben-Tal & Dick den Hertog & Bertrand Melenberg, 2022. "Extending the Scope of Robust Quadratic Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 211-226, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6157-:d:1695018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.