Comparative Analysis of Supervised Machine Learning Algorithms for Forest Habitat Mapping in Cyprus
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.
- Vorpahl, Peter & Elsenbeer, Helmut & Märker, Michael & Schröder, Boris, 2012. "How can statistical models help to determine driving factors of landslides?," Ecological Modelling, Elsevier, vol. 239(C), pages 27-39.
- Kotapati Narayana Loukika & Venkata Reddy Keesara & Venkataramana Sridhar, 2021. "Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahnaz Naemitabar & Mohammadali Zanganeh Asadi, 2021. "Landslide zonation and assessment of Farizi watershed in northeastern Iran using data mining techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2423-2453, September.
- Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
- Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
- Kumari Priya & Talukdar Sasanka & Krishna K. Osuri, 2023. "Land use land cover representation through supervised machine learning methods: sensitivity on simulation of urban thunderstorms in the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 295-317, March.
- Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
- Alireza Taheri Dehkordi & Mohammad Javad Valadan Zoej & Hani Ghasemi & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
- Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
- Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
- Zhiqi Jiang & Yijun Wen & Gui Zhang & Xin Wu, 2022. "Water Information Extraction Based on Multi-Model RF Algorithm and Sentinel-2 Image Data," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
- Kotapati Narayana Loukika & Venkata Reddy Keesara & Eswar Sai Buri & Venkataramana Sridhar, 2022. "Predicting the Effects of Land Use Land Cover and Climate Change on Munneru River Basin Using CA-Markov and Soil and Water Assessment Tool," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
- L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
- Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
- Gladys Maria Villegas Rugel & Daniel Ochoa & Jose Miguel Menendez & Frieke Van Coillie, 2023. "Evaluating the Applicability of Global LULC Products and an Author-Generated Phenology-Based Map for Regional Analysis: A Case Study in Ecuador’s Ecoregions," Land, MDPI, vol. 12(5), pages 1-32, May.
- Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
- Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
- Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
- Azher Ibrahim Al-Taei & Ali Asghar Alesheikh & Ali Darvishi Boloorani, 2023. "Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of Tigris and Euphrates Rivers Basin," Land, MDPI, vol. 12(5), pages 1-14, May.
- Yiqing Shao & Zengchuan Dong & Jinyu Meng & Shujun Wu & Yao Li & Shengnan Zhu & Qiang Zhang & Ziqin Zheng, 2023. "Analysis of Runoff Variation and Future Trends in a Changing Environment: Case Study for Shiyanghe River Basin, Northwest China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
- Daniela Piacentini & Stefano Devoto & Matteo Mantovani & Alessandro Pasuto & Mariacristina Prampolini & Mauro Soldati, 2015. "Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 681-697, August.
- L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6021-:d:1691702. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.