Author
Listed:
- Kareem M. AboRas
(Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)
- Abdullah Hameed Alhazmi
(Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)
- Ashraf Ibrahim Megahed
(Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)
Abstract
Solar energy is a promising and sustainable green energy source, showing significant advancements in photovoltaic (PV) system deployment. To maximize PV efficiency, robust maximum power point tracking (MPPT) methods are essential, as the maximum power point (MPP) shifts with changing irradiance and temperature. This paper proposes a novel MPPT control strategy for a 100 kW grid-connected PV system, based on the incremental conductance (IC) method and enhanced by a cascaded Fractional Order Proportional–Integral (FOPI) and conventional Proportional–Integral (PI) controller. The controller parameters are optimally tuned using the recently introduced RUNge Kutta optimizer (RUN). MATLAB/Simulink simulations have been conducted on the 100 kW benchmark PV model integrated into a medium-voltage grid, with the objective of minimizing the integral square error (ISE) to improve efficiency. The performance of the proposed IC-MPPT-(FOPI-PI) controller has been benchmarked against standalone PI and FOPI controllers, and the RUN optimizer is here compared with recent metaheuristic algorithms, including the Gorilla Troops Optimizer (GTO) and the African Vultures Optimizer (AVO). The evaluation covers five different environmental scenarios, including step, ramp, and realistic irradiance and temperature profiles. The RUN-optimized controller achieved exceptional performance with 99.984% tracking efficiency, sub-millisecond rise time (0.0012 s), rapid settling (0.015 s), and minimal error (ISE: 16.781), demonstrating outstanding accuracy, speed, and robustness.
Suggested Citation
Kareem M. AboRas & Abdullah Hameed Alhazmi & Ashraf Ibrahim Megahed, 2025.
"Optimal Incremental Conductance-Based MPPT Control Methodology for a 100 KW Grid-Connected PV System Employing the RUNge Kutta Optimizer,"
Sustainability, MDPI, vol. 17(13), pages 1-32, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:5841-:d:1686887
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5841-:d:1686887. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.