IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4998-d1667467.html
   My bibliography  Save this article

Evaluation of Water Security in a Water Source Area from the Perspective of Nonpoint Source Pollution

Author

Listed:
  • Jun Yang

    (College of Economics and Management, Taiyuan Normal University, Jinzhong 030619, China
    College of Agronomy, Northwest Agricultural and Forest University, Yangling 712100, China)

  • Ruijun Su

    (College of Biological Science and Technology, Taiyuan Normal University, Jinzhong 030619, China)

  • Yanbo Wang

    (School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

  • Yongzhong Feng

    (College of Agronomy, Northwest Agricultural and Forest University, Yangling 712100, China)

Abstract

Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource for the Beijing–Tianjin–Hebei region, and its security is of great significance. In this study, 28 indicators including society, nature, and economy were selected from the water sources of the MR-SNWDP from 2000 to 2017. According to the Drivers-Pressures-States-Impact-Response (DPSIR) framework principle, the entropy weight method was used for weight calculation, and the comprehensive evaluation method was used for evaluating the water security of the water sources of the MR-SNWDP. This study showed that the total loss of nonpoint source pollution (NPSP) in the water source showed a trend of slow growth, except in 2007. Over the past 18 years, the proportion of pollution from three NPSP sources, livestock, and poultry (LP) breeding industry, planting industry, and living sources, were 44.56%, 40.33%, and 15.11%, respectively. The main driving force of water security in all the areas of the water source was the total net income per capita of farmers. The main pressure was the amount of LP breeding and the amount of fertilizer application. The largest impact indicators were NPSP gray water footprint and soil erosion area, and water conservancy investment was the most effective response measure. Overall, the state of the water source safety was relatively stable, showing an overall upward trend, and it had remained at Grade III except for in 2005, 2006, and 2011. The state of water safety in all areas except Shiyan City was relatively stable, where the state of water safety had fluctuated greatly. Based on the assessment findings, implications for policy and decision-making suggestions for sustainable management of the water sources of the MR-SNWDP resources are put forward. Agricultural cultivation in water source areas should reduce the application of chemical fertilizers and accelerate the promotion of agricultural intensification. Water source areas should minimize retail livestock and poultry farming and promote ecological agriculture. The government should increase investment in water conservancy and return farmland to forests and grasslands, and at the same time strengthen the education of farmers’ awareness of environmental protection. The evaluation system of this study combined indicators such as the impact of agricultural nonpoint source pollution on water bodies, which is innovative and provides a reference for the water safety evaluation system.

Suggested Citation

  • Jun Yang & Ruijun Su & Yanbo Wang & Yongzhong Feng, 2025. "Evaluation of Water Security in a Water Source Area from the Perspective of Nonpoint Source Pollution," Sustainability, MDPI, vol. 17(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4998-:d:1667467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caizhi Sun & Yongjie Wu & Wei Zou & Liangshi Zhao & Wenxin Liu, 2018. "A Rural Water Poverty Analysis in China Using the DPSIR-PLS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 1933-1951, April.
    2. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    3. Hilary Sigman, 2014. "Decentralization and Environmental Quality: An International Analysis of Water Pollution Levels and Variation," Land Economics, University of Wisconsin Press, vol. 90(1), pages 114-130.
    4. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    6. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    7. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    8. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    9. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    10. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    11. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    12. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    13. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    14. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    15. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    16. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    17. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    18. Juliana Marcal & Blanca Antizar-Ladislao & Jan Hofman, 2021. "Addressing Water Security: An Overview," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    20. Claudia Bita-Nicolae, 2022. "Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians," Sustainability, MDPI, vol. 14(24), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4998-:d:1667467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.