IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4987-d1667221.html
   My bibliography  Save this article

Quantum-Inspired Spatio-Temporal Inference Network for Sustainable Car-Sharing Demand Prediction

Author

Listed:
  • Nihad Brahimi

    (School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

  • Huaping Zhang

    (School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

  • Zahid Razzaq

    (Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, 16126 Genova, Italy)

Abstract

Accurate car-sharing demand prediction is a key factor in enhancing the operational efficiency of shared mobility systems. However, mobility data often exhibit temporal, spatial, and spatio-temporal interdependencies that pose significant challenges for conventional models. These models typically struggle to capture nonlinear and high-dimensional patterns. Existing methods struggle to model entangled relationships across these modalities and lack scalability in dynamic urban environments. This paper presents the Quantum-Inspired Spatio-Temporal Inference Network (QSTIN), an enhanced approach that builds upon our previously proposed Explainable Spatio-Temporal Inference Network (eX-STIN). QSTIN integrates a Quantum-Inspired Neural Network (QINN) into the fusion module, generating complex-valued feature representations. This enables the model to capture intricate, nonlinear dependencies across heterogeneous mobility features. Additionally, Quantum Particle Swarm Optimization (QPSO) is applied at the final prediction stage to optimize output parameters and improve convergence stability. Experimental results indicate that QSTIN consistently outperforms both conventional baseline models and the earlier eX-STIN in predictive accuracy. By enhancing demand prediction, QSTIN supports efficient vehicle allocation and planning, reducing energy use and emissions and promoting sustainable urban mobility from both environmental and economic perspectives.

Suggested Citation

  • Nihad Brahimi & Huaping Zhang & Zahid Razzaq, 2025. "Quantum-Inspired Spatio-Temporal Inference Network for Sustainable Car-Sharing Demand Prediction," Sustainability, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4987-:d:1667221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanni Liang & Jianxin You & Ran Wang & Bo Qin & Shuo Han, 2024. "Urban Transportation Data Research Overview: A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 16(22), pages 1-45, November.
    2. Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    2. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    3. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    4. Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
    5. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    6. Halit Tutar & Senol Celik & Hasan Er & Erdal Gönülal, 2025. "Impact of morphological traits and irrigation levels on fresh herbage yield of sorghum x sudangrass hybrid: Modelling data mining techniques," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-24, February.
    7. Dahl, Christian M. & Effraimidis, Georgios & Pedersen, Mikkel H., 2019. "Nonparametric wind power forecasting under fixed and random censoring," Energy Economics, Elsevier, vol. 84(C).
    8. Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
    9. Maticka, Martin J. & Mahmoud, Thair S., 2025. "Bayesian Belief Networks: Redefining wholesale electricity price modelling in high penetration non-firm renewable generation power systems," Renewable Energy, Elsevier, vol. 239(C).
    10. Chaitanya B. Pande & Nadhir Al-Ansari & N. L. Kushwaha & Aman Srivastava & Rabeea Noor & Manish Kumar & Kanak N. Moharir & Ahmed Elbeltagi, 2022. "Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree," Land, MDPI, vol. 11(11), pages 1-24, November.
    11. Aydın, Emre & Turan, Onder, 2023. "Performance models of passenger aircraft and propulsion systems based on particle swarm and Spotted Hyena Optimization methods," Energy, Elsevier, vol. 268(C).
    12. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    13. Abraão D. C. Nascimento & Maria C. S. Lima & Hassan Bakouch & Najla Qarmalah, 2023. "Scaled Muth–ARMA Process Applied to Finance Market," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    14. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    15. Roman Tkachenko & Ivan Izonin & Pavlo Vitynskyi & Nataliia Lotoshynska & Olena Pavlyuk, 2018. "Development of the Non-Iterative Supervised Learning Predictor Based on the Ito Decomposition and SGTM Neural-Like Structure for Managing Medical Insurance Costs," Data, MDPI, vol. 3(4), pages 1-14, October.
    16. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    17. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    18. Dursun Aydin & Ersin Yilmaz, 2021. "Censored Nonparametric Time-Series Analysis with Autoregressive Error Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 169-202, August.
    19. Hongxing Li & Charlotte D. Smith & Li Wang & Zheng Li & Chuanlong Xiong & Rong Zhang, 2019. "Combining Spatial Analysis and a Drinking Water Quality Index to Evaluate Monitoring Data," IJERPH, MDPI, vol. 16(3), pages 1-9, January.
    20. Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4987-:d:1667221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.