Author
Listed:
- Sofía García-Maza
(Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130014, Bolivar, Colombia)
- Segundo Rojas-Flores
(Institutos y Centros de Investigación, Universidad Cesar Vallejo, Trujillo 13001, Peru)
- Ángel Darío González-Delgado
(Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130014, Bolivar, Colombia)
Abstract
The demand for palm oil is expected to increase due to its wide use in the market. Palm oil is extracted from the fruit of the African palm tree, yielding crude palm oil (CPO) and palm kernel oil (PKO). The production process involves multiple stages, from harvesting to drying; while the problem lies in the scarcity of fresh fruit bunches and the lack of diagnosis of the process. This study proposes to carry out a WEP (Water–Energy–Product) technical assessment to optimize the use of water, energy, and raw materials in the production of CPO, calculating a series of technical parameters and indicators and determining the latter’s efficiency. The results showed that for a processing capacity of 30,000 kg/h of African palm bunches, 5070 kg/h of CPO were obtained, reaching a production yield of 69.63%, a wastewater production ratio (WPR) of 58.64 %, a fractional water consumption (FWC) of 2.38 m 3 /t of CPO, a total cost of freshwater (TCF) of 347.33 USD/day, a total cost of energy (TCE) of 13,235.95 USD/day, an energy-specific intensity (ESI) of 4905.66 MJ/t of CPO, a natural gas consumption index (NGCI) of 103,421.65 m 3 /t of CPO, an electric energy consumption index (EECI) of 165.67 kWh/t of CPO, and a net energy ratio (NER) and energy utilization index (ECI) of 165.67 kWh/t of CPO. The EUI is higher than 1. Additionally, five indicators showed an efficiency higher than 80%, highlighting the energy indicators (TCE, NGCI, and EECI), which reached the highest efficiency (95.45%) due to the predominant use of natural gas, and the water indicators (FWC and TCF), which reached 92.90% and 88.12%, respectively. Finally, improvements are required in the WPR (41.36%) and the ESI (78.13%), which merit optimization techniques using mass and energy integration, respectively.
Suggested Citation
Sofía García-Maza & Segundo Rojas-Flores & Ángel Darío González-Delgado, 2025.
"Technical Insights into Crude Palm Oil (CPO) Production Through Water–Energy–Product (WEP) Analysis,"
Sustainability, MDPI, vol. 17(10), pages 1-12, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:10:p:4485-:d:1655963
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4485-:d:1655963. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.