IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3798-d1387069.html
   My bibliography  Save this article

Regulated Deficit Irrigation to Boost Processing Tomato Sustainability and Fruit Quality

Author

Listed:
  • Andrea Burato

    (CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, 84098 Pontecagnano, Italy
    School of Agricultural, Forest and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
    These authors contributed equally to this work.)

  • Giovanna Marta Fusco

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
    These authors contributed equally to this work.)

  • Alfonso Pentangelo

    (CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, 84098 Pontecagnano, Italy)

  • Rosalinda Nicastro

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Anna Francesca Modugno

    (CREA Research Centre for Agriculture and Environment, Via Ulpiani 5, 70125 Bari, Italy)

  • Fabio Scotto di Covella

    (CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, 84098 Pontecagnano, Italy)

  • Domenico Ronga

    (Pharmacy Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Petronia Carillo

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Pasquale Campi

    (CREA Research Centre for Agriculture and Environment, Via Ulpiani 5, 70125 Bari, Italy)

  • Mario Parisi

    (CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, 84098 Pontecagnano, Italy)

Abstract

Improving water use efficiency is gaining relevance for the sustainability of agricultural practices. In semi-arid Mediterranean areas, recent studies highlighted that future climatic scenarios will be even more critical for crops, given the increase in water scarcity. In this context, the rationalization of irrigation water is necessary to sustain processing tomato ( Solanum lycopersicum L.) yield and quality since this crop requires large volumes of water. The present research aimed to identify the effects of a regulated deficit irrigation (RDI) strategy on the environmental and economic sustainability and fruit technological and functional quality of the processing tomato crop in the Mediterranean area. A two-year, open-field experiment was carried out to compare full irrigation management (IRR, restoring 100% ET c ) with an RDI strategy based on restoring 50% ET c when the first fruit cluster reached the typical size (BBCH 701 phenological stage, relative to Solanaceous fruits). Remarkable water saving (21.46%, average of the two years) was achieved under RDI without significant variations in total and marketable yield compared to the IRR regime. Consequently, improved economic water productivity (+23.17%) was observed, allowing enhanced processing tomato sustainability. The RDI strategy boosted the glucose content (+17.78%), soluble solids content (SSC, +10.17%), and dry matter of the fruits (+10.03 g%). Furthermore, a higher SSC-to-titratable acidity ratio (+15.47%) and a negative shift in fructose/glucose balance (−7.71%) were observed in RDI-treated plants. Higher levels of the drought stress markers proline (+38.99%) and total polyphenols (+20.58%) were detected in RDI- compared to IRR-irrigated tomato fruits. These findings suggested the RDI strategy as an effective and sustainable approach for increasing both water productivity and the fruit quality of the processing tomato crop under semi-arid Mediterranean climatic conditions.

Suggested Citation

  • Andrea Burato & Giovanna Marta Fusco & Alfonso Pentangelo & Rosalinda Nicastro & Anna Francesca Modugno & Fabio Scotto di Covella & Domenico Ronga & Petronia Carillo & Pasquale Campi & Mario Parisi, 2024. "Regulated Deficit Irrigation to Boost Processing Tomato Sustainability and Fruit Quality," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3798-:d:1387069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    13. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Mansour, Elsayed & Desoky, El-Sayed M. & Ali, Mohamed M.A. & Abdul-Hamid, Mohamed I. & Ullah, Hayat & Attia, Ahmed & Datta, Avishek, 2021. "Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    19. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    20. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3798-:d:1387069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.