IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1676-d1341084.html
   My bibliography  Save this article

Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu

Author

Listed:
  • Siyu Xie

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China
    Institute of Advanced Equipment and Manufacturing, Guangxi Academy of Sciences, Nanning 530012, China)

  • Guangyan Wang

    (Liaocheng Power Supply Company Dongchang Power Supply Center, STATE GRID Corporation of China, Liaocheng 252000, China)

  • Yiyi Zhang

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Bo Li

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Junhui Zhao

    (Eversource Energy, Berlin, CT 06037, USA)

Abstract

Battery swapping station (BSS) technology can provide electric taxis (ETs) with more economical and high-efficiency operating services. However, the battery-swapping market needs to be more organized due to unpredictable swapping periods for ETs, resulting in more requirements for batteries of BSSs needing multiple batteries simultaneously. To address these challenges, this paper first analyzed two operation patterns of taxis to estimate the demand for swapping ETs. Then, an optimal capacity model of BSS is proposed to optimize the battery capacity of BSSs to meet the swapping demand of ETs. Finally, a genetic algorithm (GA) is utilized to solve the proposed model. The real operating data of taxis with GPS routes in Chengdu city are used as a case study to validate the proposed method. The results show that the proposed method could obtain the optimal battery capacity of a BSS and improve the economic benefits of BSSs.

Suggested Citation

  • Siyu Xie & Guangyan Wang & Yiyi Zhang & Bo Li & Junhui Zhao, 2024. "Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu," Sustainability, MDPI, vol. 16(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1676-:d:1341084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, En-jian & Zhang, Tian-yu & Wang, David Z.W. & Zhang, Jun-yi, 2024. "Dynamic planning and decarbonization pathways of the highway power supply network," Applied Energy, Elsevier, vol. 376(PB).
    2. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    3. Dongpu Fu & Jiarui Sun & Cuiyou Yao & Fulei Shi, 2024. "The influence of policy incentives on the diffusion of battery-swapping taxis and stations: a coupled evolutionary game model in complex networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26945-26969, October.
    4. Nayak, Dhyaan Sandeep & Misra, Shamik, 2024. "An operational scheduling framework for Electric Vehicle Battery Swapping Station under demand uncertainty," Energy, Elsevier, vol. 290(C).
    5. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    6. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    7. Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
    8. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    9. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    10. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    11. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    13. Tao, Ye & Huang, Miaohua & Chen, Yupu & Yang, Lan, 2020. "Orderly charging strategy of battery electric vehicle driven by real-world driving data," Energy, Elsevier, vol. 193(C).
    14. Hao Qiang & Yanchun Hu & Wenqi Tang & Xiaohua Zhang, 2023. "Research on Optimization Strategy of Battery Swapping for Electric Taxis," Energies, MDPI, vol. 16(5), pages 1-15, February.
    15. Kaifu Yuan & Chao Li & Guangqiang Wu, 2023. "Study on Vehicle Supply Chain Operation Mode Selection Based on Battery Leasing and Battery Swapping Services," Mathematics, MDPI, vol. 11(14), pages 1-21, July.
    16. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    17. Patel, Minakshi & Arora, Pratham & Singh, Rhythm & Mahapatra, Diptiranjan & Chaturvedi, Vaibhav & Kumar Saini, Santosh, 2024. "Impact of battery swapping in the passenger sector: EV adoption, emissions, and energy mix," Energy, Elsevier, vol. 298(C).
    18. Jian, Liu & Zechun, Hu & Banister, David & Yongqiang, Zhao & Zhongying, Wang, 2018. "The future of energy storage shaped by electric vehicles: A perspective from China," Energy, Elsevier, vol. 154(C), pages 249-257.
    19. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Xue, Jin, 2025. "A Bi-objective battery dispatching model of taxi battery swapping station network considering green power consumption," Renewable Energy, Elsevier, vol. 239(C).
    20. Zhou, Min & Long, Piao & Kong, Nan & Zhao, Lindu & Jia, Fu & Campy, Kathryn S., 2021. "Characterizing the motivational mechanism behind taxi driver’s adoption of electric vehicles for living: Insights from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 134-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1676-:d:1341084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.