IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10206-d1526630.html
   My bibliography  Save this article

A Novel Hybrid Approach: Integrating Bayesian SPDE and Deep Learning for Enhanced Spatiotemporal Modeling of PM 2.5 Concentrations in Urban Airsheds for Sustainable Climate Action and Public Health

Author

Listed:
  • Daniel Patrick Johnson

    (Department of Geography, Indiana University, Indianapolis, IN 46202, USA)

  • Niranjan Ravi

    (Department of Electrical and Computer Engineering, Indiana University, Indianapolis, IN 46202, USA)

  • Gabriel Filippelli

    (Department of Earth and Environmental Science, Indiana University, Indianapolis, IN 46202, USA)

  • Asrah Heintzelman

    (Department of Earth Sciences, Indiana University, Indianapolis, IN 46202, USA)

Abstract

This study introduces a novel hybrid model combining Bayesian Stochastic Partial Differential Equations (SPDE) with deep learning, specifically Convolutional Neural Networks (CNN) and Deep Feedforward Neural Networks (DFFNN), to predict PM 2.5 concentrations. Traditional models often fail to account for non-linear relationships and complex spatial dependencies, critical in urban settings. By integrating SPDE’s spatial-temporal structure with neural networks’ capacity for non-linearity, our model significantly outperforms standalone methods. Accurately predicting air pollution supports sustainable public health strategies and targeted interventions, which are critical for mitigating the adverse health effects of PM 2.5 , particularly in urban areas heavily impacted by climate change. The hybrid model was applied to the Pleasant Run Airshed in Indianapolis, Indiana, utilizing a comprehensive dataset that included PM 2.5 sensor data, meteorological variables, and land-use information. By combining SPDE’s ability to model spatial-temporal structures with the adaptive power of neural networks, the model achieved a high level of predictive accuracy, significantly outperforming standalone methods. Additionally, the model’s interpretability was enhanced through the use of SHAP (Shapley Additive Explanations) values, which provided insights into the contribution of each variable to the model’s predictions. This framework holds the potential for improving air quality monitoring and supports more targeted public health interventions and policy-making efforts.

Suggested Citation

  • Daniel Patrick Johnson & Niranjan Ravi & Gabriel Filippelli & Asrah Heintzelman, 2024. "A Novel Hybrid Approach: Integrating Bayesian SPDE and Deep Learning for Enhanced Spatiotemporal Modeling of PM 2.5 Concentrations in Urban Airsheds for Sustainable Climate Action and Public Health," Sustainability, MDPI, vol. 16(23), pages 1-28, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10206-:d:1526630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asrah Heintzelman & Gabriel M. Filippelli & Max J. Moreno-Madriñan & Jeffrey S. Wilson & Lixin Wang & Gregory K. Druschel & Vijay O. Lulla, 2023. "Efficacy of Low-Cost Sensor Networks at Detecting Fine-Scale Variations in Particulate Matter in Urban Environments," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    2. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    3. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    4. Ben Seiyon Lee & Murali Haran, 2025. "A class of models for large zero-inflated spatial data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 746-768, September.
    5. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    6. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    7. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    8. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    9. Tzu‐Han Peng & Cheng‐Ching Lin & Nan‐Jung Hsu & Chun‐Shu Chen, 2025. "A Spatial Hierarchical PGEV Model With Temporal Effects for Enhancing Extreme Value Analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
    10. Fasil Wagnew & Kefyalew Addis Alene & Matthew Kelly & Darren Gray, 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia," IJERPH, MDPI, vol. 20(21), pages 1-15, October.
    11. Leonardo Cefalo & Paolo Maranzano, 2025. "A comprehensive analysis of the Italian school system using harmonised open data via the SchoolDataIT R package," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 815-839, September.
    12. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    13. Vitor Dias Rocio & Márcio Poletti Laurini, 2023. "Bayesian spatio-temporal modeling of real estate launch prices," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-47, December.
    14. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    15. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    16. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    17. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    18. Jeffrey W. Doser & Andrew O. Finley & Sarah P. Saunders & Marc Kéry & Aaron S. Weed & Elise F. Zipkin, 2025. "Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 146-171, March.
    19. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.
    20. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10206-:d:1526630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.