Deep Learning-Based Dust Detection on Solar Panels: A Low-Cost Sustainable Solution for Increased Solar Power Generation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Karayel, G. Kubilay & Dincer, Ibrahim, 2024. "Green hydrogen production potential of Canada with solar energy," Renewable Energy, Elsevier, vol. 221(C).
- Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tuba Tanyıldızı Ağır, 2024. "Prediction of Losses Due to Dust in PV Using Hybrid LSTM-KNN Algorithm: The Case of Saruhanlı," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
- Cui, Yiming & Liu, Mengmeng & Li, Wei & Lian, Jijian & Yao, Ye & Gao, Xifeng & Yu, Lina & Wang, Ting & Li, Yichu & Yin, Jilong, 2024. "An exploratory framework to identify dust on photovoltaic panels in offshore floating solar power stations," Energy, Elsevier, vol. 307(C).
- Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
- Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
- Dawahdeh, Ahmad I. & Al-Shdeifat, Raneem A. & Al-Nimr, Moh’d A., 2024. "Power-to-X system utilizing an advanced solar system integrated with a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 304(C).
- Araji, Mohamad T. & Waqas, Ali & Ali, Rahmat, 2024. "Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules," Applied Energy, Elsevier, vol. 375(C).
- Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
- Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
- Liu, Shuaishuai & Yang, Bin & Zhi, Yuan & Yu, Xiaohui, 2023. "Thermal-mechanical performance analysis of parabolic trough receivers under various optical errors based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 210(C), pages 687-700.
- Muhammad, Hafiz Ali & Lim, Su & Kim, Hyerin & Lee, Young Duk, 2025. "Comparative evaluation of electrolysis methods for solar-assisted green hydrogen production," Renewable Energy, Elsevier, vol. 239(C).
- Qiu, Yiwei & Zhou, Yi & Chen, Shi & Zang, Tianlei & Zhou, Buxiang, 2024. "Flexibility assessment and aggregation of alkaline electrolyzers considering dynamic process constraints for energy management of renewable power-to-hydrogen systems," Renewable Energy, Elsevier, vol. 235(C).
- Renaudineau, Hugues & Llor, Ana M. & Hernandez, Matias S. & Concha, Diego & Wilson-Veas, Alan H. & Kouro, Samir, 2024. "Photovoltaic to electrolysis off-grid green hydrogen production with DC–DC conversion," Renewable Energy, Elsevier, vol. 237(PC).
- Cruz-Rojas, Tonatiuh & Franco, Jesus Alejandro & Hernandez-Escobedo, Quetzalcoatl & Ruiz-Robles, Dante & Juarez-Lopez, Jose Manuel, 2023. "A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning," Renewable Energy, Elsevier, vol. 217(C).
- Lala Hamidova & Elnara Samedova, 2024. "Opportunities and Prospects for Hydrogen Production in Azerbaijan: Steps towards the Transition to a Hydrogen Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 501-508, July.
- Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Fengkai Gao & Dongmin Yu & Qiang Sheng, 2022. "Analytical Treatment of Unsteady Fluid Flow of Nonhomogeneous Nanofluids among Two Infinite Parallel Surfaces: Collocation Method-Based Study," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
- Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
- Yang, Xiaolin & Zhang, Kefei & Ni, Chao & Cao, Hua & Thé, Jesse & Xie, Guangyuan & Tan, Zhongchao & Yu, Hesheng, 2022. "Ash determination of coal flotation concentrate by analyzing froth image using a novel hybrid model based on deep learning algorithms and attention mechanism," Energy, Elsevier, vol. 260(C).
- Liu, Shuaishuai & Yang, Bin & Yu, Xiaohui, 2023. "Impact of installation error and tracking error on the thermal-mechanical properties of parabolic trough receivers," Renewable Energy, Elsevier, vol. 212(C), pages 197-211.
- Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
More about this item
Keywords
renewable energy; image classification; artificial intelligence; deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8664-:d:1493641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.