IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4136-d1395171.html
   My bibliography  Save this article

Deficit Irrigation-Based Improvement in Growth and Yield of Quinoa in the Northwestern Arid Region in China

Author

Listed:
  • Mukeran Awa

    (Department of Water Conservancy and Hydraulic Engineering, Faculty of Water Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Jinghua Zhao

    (Department of Water Conservancy and Hydraulic Engineering, Faculty of Water Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Hudan Tumaerbai

    (Department of Water Conservancy and Hydraulic Engineering, Faculty of Water Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Given the current global water scarcity issues, which particularly affect arid regions such as northwestern China, it is crucial to find crop planting patterns that result in efficient water resource utilization. Quinoa, as a drought-resistant and highly nutritious crop, has garnered significant attention from agricultural researchers in recent years. From 2019 to 2020, a series of experimental studies were conducted under non-mulching drip irrigation conditions to investigate the growth adaptability and the response to different irrigation levels of quinoa in an arid region in northwestern China. A comparative analysis of quinoa’s dry matter accumulation, yield, thousand-grain weight, harvest index, and water use efficiency under varying irrigation levels revealed that increasing irrigation significantly enhanced quinoa’s dry matter accumulation and yield. By optimizing the irrigation strategies, we found that the water-saving practice of initiating moderate irrigation in the sensitive water-demanding stages (flowering and fruiting) of quinoa increased the yield. The experiment results showed that, in 2020, the optimal irrigation amount was 3675 m 3 ·ha −1 during a 14-day irrigation cycle, meeting quinoa’s growth requirements while improving water resource utilization efficiency. This study not only provides a scientific basis for the efficient cultivation of quinoa in the arid regions of northwestern China, but also offers new insights into and technical support for agricultural water resource management in the region, contributing to the sustainable development of agriculture in arid areas.

Suggested Citation

  • Mukeran Awa & Jinghua Zhao & Hudan Tumaerbai, 2024. "Deficit Irrigation-Based Improvement in Growth and Yield of Quinoa in the Northwestern Arid Region in China," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4136-:d:1395171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk & Garcia, Magali & Condori, Octavio & Mamani, Judith & Miranda, Roberto & Cusicanqui, Jorge & Taboada, Cristal & Yucra, Edwin & Vacher, Jean, 2008. "Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano?," Agricultural Water Management, Elsevier, vol. 95(8), pages 909-917, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    2. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    3. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    4. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    5. Geerts, S. & Raes, D. & Garcia, M. & Taboada, C. & Miranda, R. & Cusicanqui, J. & Mhizha, T. & Vacher, J., 2009. "Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano," Agricultural Water Management, Elsevier, vol. 96(11), pages 1652-1658, November.
    6. Ahmadi, Seyed Hamid & Solgi, Shahin & Sepaskhah, Ali Reza, 2019. "Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Misra, S.C. & Shinde, S. & Geerts, S. & Rao, V.S. & Monneveux, P., 2010. "Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat?," Agricultural Water Management, Elsevier, vol. 97(1), pages 57-65, January.
    8. Arman Ganji & Sara Kaviani, 2013. "Probability Analysis of Crop Water Stress Index: An Application of Double Bounded Density Function (DB-CDF)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3791-3802, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4136-:d:1395171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.