IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4282-d1082724.html
   My bibliography  Save this article

VR-Based Learning Media of Earthquake-Resistant Construction for Civil Engineering Students

Author

Listed:
  • Tri Kuncoro

    (Department of Civil Engineering and Planning, Universitas Negeri Malang, Malang 65145, Indonesia)

  • Muhammad Aris Ichwanto

    (Department of Civil Engineering and Planning, Universitas Negeri Malang, Malang 65145, Indonesia)

  • Dzul Fikri Muhammad

    (Department of Civil Engineering and Planning, Universitas Negeri Malang, Malang 65145, Indonesia)

Abstract

The shaking of the surface of the Earth is what is known as an earthquake; its effects can span a wide area and cause such damage as to result in the total collapse of buildings. It is essential to improve the construction industry to protect buildings from disaster. However, construction development is costly. Therefore, this article focuses mainly on creating an earthquake-resistant construction model using Virtual Reality (VR), which offers its users new ways to improve knowledge transfer and communication. There were three stages in generating this model: pre-development, development, and post-development. These stages include a needs assessment, planning, initial development, validation, analysis and evaluation, and field testing. In the post-development stage, the model was then tested by civil engineering students, and a statistical analysis was used to evaluate the implementation of VR. The VR was developed to assist civil engineering students while fostering their interest in information technology. The results indicated that the VR-based application had a favorable and significant effect on learning. In addition, the mean score of 17.3 showed an improvement in average score for the VR-based application compared to traditional education. Integration of VR into civil engineering education can statistically improve learning outcomes, particularly regarding the construction of earthquake-resistant buildings.

Suggested Citation

  • Tri Kuncoro & Muhammad Aris Ichwanto & Dzul Fikri Muhammad, 2023. "VR-Based Learning Media of Earthquake-Resistant Construction for Civil Engineering Students," Sustainability, MDPI, vol. 15(5), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4282-:d:1082724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & Peng Wu & Jun Wang & Hung-Lin Chi & Xiangyu Wang, 2018. "A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training," IJERPH, MDPI, vol. 15(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui Ye & Hongzhe Yue & Jingjing Yang & Hongyang Li & Qingting Xiang & Yuan Fu & Can Cui, 2020. "Understanding the Sociocognitive Process of Construction Workers’ Unsafe Behaviors: An Agent-Based Modeling Approach," IJERPH, MDPI, vol. 17(5), pages 1-33, March.
    2. Hsiao-Hsien Lin & I.-Yun Chen & Chih-Hung Tseng & Yueh-Shiu Lee & Jao-Chuan Lin, 2022. "A Study of the Impact of River Improvement and Greening on Public Reassurance and the Urban Well-Being Index during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(7), pages 1-28, March.
    3. Na Chen & Ming Zhao & Kun Gao & Jun Zhao, 2021. "Experimental Study on the Evaluation and Influencing Factors on Individual’s Emergency Escape Capability in Subway Fire," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    4. Murielle G. Kluge & Steven Maltby & Angela Keynes & Eugene Nalivaiko & Darrell J. R. Evans & Frederick R. Walker, 2022. "Current State and General Perceptions of the Use of Extended Reality (XR) Technology at the University of Newcastle: Interviews and Surveys From Staff and Students," SAGE Open, , vol. 12(2), pages 21582440221, April.
    5. Xiangcheng Meng & Huaiyuan Zhai & Alan H. S. Chan, 2019. "Development of Scales to Measure and Analyse the Relationship of Safety Consciousness and Safety Citizenship Behaviour of Construction Workers: An Empirical Study in China," IJERPH, MDPI, vol. 16(8), pages 1-18, April.
    6. Banus Kam Leung Low & Siu Shing Man & Alan Hoi Shou Chan & Saad Alabdulkarim, 2019. "Construction Worker Risk-Taking Behavior Model with Individual and Organizational Factors," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    7. Gondia, Ahmed & Moussa, Ahmed & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2023. "Machine learning-based construction site dynamic risk models," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    8. Sahand Azarby & Arthur Rice, 2022. "Understanding the Effects of Virtual Reality System Usage on Spatial Perception: The Potential Impacts of Immersive Virtual Reality on Spatial Design Decisions," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    9. Jiahui Huang & Salmiza Saleh & Yufei Liu, 2021. "A Review on Artificial Intelligence in Education," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 10, May.
    10. Na Chen & Ming Zhao & Kun Gao & Jun Zhao, 2020. "The Physiological Experimental Study on the Effect of Different Color of Safety Signs on a Virtual Subway Fire Escape—An Exploratory Case Study of Zijing Mountain Subway Station," IJERPH, MDPI, vol. 17(16), pages 1-19, August.
    11. Robertas Damaševičius & Tatjana Sidekerskienė, 2024. "Virtual Worlds for Learning in Metaverse: A Narrative Review," Sustainability, MDPI, vol. 16(5), pages 1-41, February.
    12. Samuel Tomczyk & Maxi Rahn & Henriette Markwart & Silke Schmidt, 2021. "A Walk in the Park? Examining the Impact of App-Based Weather Warnings on Affective Reactions and the Search for Information in a Virtual City," IJERPH, MDPI, vol. 18(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4282-:d:1082724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.