IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3524-d1068463.html
   My bibliography  Save this article

Investigation of Predictive Regulation Strategy of Secondary Loop in District Heating Systems

Author

Listed:
  • Zhongbo Li

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Luo

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

  • Ning Zhang

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

  • Xiaojie Lin

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Jiaxing Research Institute, Zhejiang University, Jiaxing 314499, China)

  • Wei Huang

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Encheng Feng

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Wei Zhong

    (College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
    Zhejiang Key Laboratory of Clean Energy and Carbon Neutrality, Zhejiang University, Hangzhou 310027, China
    Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China)

Abstract

The urban energy system is greatly dependent on the District Heating System (DHS). However, many difficulties with regulation and control are caused by its large scale and numerous coupling variables. Additionally, reliance on manual experience means it can be challenging to guarantee heating comfort and effectiveness in the regulation of DHS. This paper proposes a data-driven temperature response prediction model to predict secondary loop supply temperature based on the heating substation’s historical operating status, valve opening degree, weather conditions, etc. Further, the XGBoost model was established in this article with different input and prediction steps. The results show that the XGBoost model with 72 input steps and 24 prediction steps has better performance. As an application example, the model was applied to an urban central heating system. Based on this data-driven model, different operation strategies on primary loop valve opening are compared for temperature response analysis. Operators can check the temperature responses of different valve control strategies before being applied. This paper guides the regulation behavior of the DHS, which is of great significance for the operation of the actual DHS.

Suggested Citation

  • Zhongbo Li & Zheng Luo & Ning Zhang & Xiaojie Lin & Wei Huang & Encheng Feng & Wei Zhong, 2023. "Investigation of Predictive Regulation Strategy of Secondary Loop in District Heating Systems," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3524-:d:1068463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    2. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2011. "Experimental evaluation of radiator control based on primary supply temperature for district heating substations," Applied Energy, Elsevier, vol. 88(12), pages 4945-4951.
    3. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    4. Pavel Ruseljuk & Andrei Dedov & Aleksandr Hlebnikov & Kertu Lepiksaar & Anna Volkova, 2023. "Comparison of District Heating Supply Options for Different CHP Configurations," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    6. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    7. Sun, Chunhua & Liu, Yanan & Gao, Xiaoyu & Wang, Jinda & Yang, Lan & Qi, Chengyong, 2022. "Research on control strategy integrated with characteristics of user's energy-saving behavior of district heating system," Energy, Elsevier, vol. 245(C).
    8. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    2. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    5. Zhong, Wei & Feng, Encheng & Lin, Xiaojie & Xie, Jinfang, 2022. "Research on data-driven operation control of secondary loop of district heating system," Energy, Elsevier, vol. 239(PB).
    6. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Zhang, Xuemei & Yuan, Jianjuan & Kong, Xiangfei & Han, Jingxiao & Shi, Ying, 2023. "Coupling of flexible phase change materials and pipe for improving the stability of heating system," Energy, Elsevier, vol. 275(C).
    8. Bonan Huang & Chaoming Zheng & Qiuye Sun & Ruixue Hu, 2019. "Optimal Economic Dispatch for Integrated Power and Heating Systems Considering Transmission Losses," Energies, MDPI, vol. 12(13), pages 1-19, June.
    9. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    10. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
    11. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    12. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    13. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
    14. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    15. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    16. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    17. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    18. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    19. Tunzi, Michele & Benakopoulos, Theofanis & Yang, Qinjiang & Svendsen, Svend, 2023. "Demand side digitalisation: A methodology using heat cost allocators and energy meters to secure low-temperature operations in existing buildings connected to district heating networks," Energy, Elsevier, vol. 264(C).
    20. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3524-:d:1068463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.