IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1463-d1033550.html
   My bibliography  Save this article

Research on Value Evaluation and Impact Mechanism of Water Ecological Services in Mountainous Cities: A Case Study of Xiangxi Prefecture

Author

Listed:
  • Suifeng Zhang

    (Department of Architecture and Art, Central South University, Changsha 412007, China
    Department of City and Environment, Hunan University of Technology, Zhuzhou 410083, China)

  • Wang Zhang

    (Department of City and Environment, Hunan University of Technology, Zhuzhou 410083, China)

  • Canhua Liu

    (Xiangtan Planning and Architectural Design Institute Co., Ltd., Xiangtan 411100, China)

Abstract

To have a more comprehensive understanding of the water ecological services of Xiangxi, the index system of water ecological service is constructed and the intensity of its influencing factors founded on the geographic detector model (GDM) is obtained in this paper. Then, the water ecological service index of eight cities in Xiangxi to evaluate the function level is determined. It is proved that: (a) The overall service value of water cultural function as a key factor in the construction of water ecological services, soil conservation value, and water supply value are relatively poor. (b) The value of the water ecological culture function type is the largest, with an overall value of 353.32 billion yuan. The value of water resources supply is the smallest, with a value of only 4.37 billion yuan, which indicates that human activities have a strong interference with the service function of the water ecosystem. (c) Based on GDM, four factors, including precipitation, resident population, sewage discharge, and water quality compliance rate, have a significant impact on water ecological services. Among them, per capita GDP(X7) > vegetation coverage (X6) > precipitation (X2) > resident population (X4), which further clearly explains the impact intensity of mountain climate basic conditions and human socio-economic activities on water ecological services. The results can offer a practical basis for the spatial development and protection of the water ecosystem to coordinate humans and the environment.

Suggested Citation

  • Suifeng Zhang & Wang Zhang & Canhua Liu, 2023. "Research on Value Evaluation and Impact Mechanism of Water Ecological Services in Mountainous Cities: A Case Study of Xiangxi Prefecture," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1463-:d:1033550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Houtven, George & Mansfield, Carol & Phaneuf, Daniel J. & von Haefen, Roger & Milstead, Bryan & Kenney, Melissa A. & Reckhow, Kenneth H., 2014. "Combining expert elicitation and stated preference methods to value ecosystem services from improved lake water quality," Ecological Economics, Elsevier, vol. 99(C), pages 40-52.
    2. Grizzetti, B. & Lanzanova, D. & Liquete, C. & Reynaud, A. & Cardoso, A.C., 2016. "Assessing water ecosystem services for water resource management," Environmental Science & Policy, Elsevier, vol. 61(C), pages 194-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokhrukh-Mirzo Jalilov, 2017. "Value of Clean Water Resources: Estimating the Water Quality Improvement in Metro Manila, Philippines," Resources, MDPI, vol. 7(1), pages 1-15, December.
    2. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    3. Cloé Garnache & Scott M. Swinton & Joseph A. Herriges & Frank Lupi & R. Jan Stevenson, 2016. "Solving the Phosphorus Pollution Puzzle: Synthesis and Directions for Future Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1334-1359.
    4. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    5. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    6. Jonathan Fletcher & Nigel Willby & David M. Oliver & Richard S. Quilliam, 2023. "Field-Scale Floating Treatment Wetlands: Quantifying Ecosystem Service Provision from Monoculture vs. Polyculture Macrophyte Communities," Land, MDPI, vol. 12(7), pages 1-15, July.
    7. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    8. Newbold, Stephen C. & Johnston, Robert J., 2020. "Valuing non-market valuation studies using meta-analysis: A demonstration using estimates of willingness-to-pay for water quality improvements," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    9. Tao Wu & Peipei Zha & Mengjie Yu & Guojun Jiang & Jianzhen Zhang & Qinglong You & Xuefeng Xie, 2021. "Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-18, July.
    10. Keeler, Bonnie L. & Wood, Spencer A. & Polasky, Stephen & Kling, Catherine L. & Filstrup, Christopher T. & Downing, John A., 2015. "Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes," ISU General Staff Papers 201501290800001557, Iowa State University, Department of Economics.
    11. Ioannis Souliotis & Nikolaos Voulvoulis, 2021. "Natural Capital Accounting Informing Water Management Policies in Europe," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    12. Carolus, Johannes Friedrich & Hanley, Nick & Olsen, Søren Bøye & Pedersen, Søren Marcus, 2018. "A Bottom-up Approach to Environmental Cost-Benefit Analysis," Ecological Economics, Elsevier, vol. 152(C), pages 282-295.
    13. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Pettinotti, Laetitia & de Ayala, Amaia & Ojea, Elena, 2018. "Benefits From Water Related Ecosystem Services in Africa and Climate Change," Ecological Economics, Elsevier, vol. 149(C), pages 294-305.
    15. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    16. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    17. Yu, Shuying & Peng, Jian & Xia, Pei & Wang, Qi & Grabowski, Robert C & Azhoni, Adani & Bala, Brij & Shankar, Vijay & Meersmans, Jeroen, 2023. "Network analysis of water-related ecosystem services in search of solutions for sustainable catchment management: A case study in Sutlej-Beas River systems, India," Ecosystem Services, Elsevier, vol. 63(C).
    18. Wendong Zhang & Brent Sohngen, 2018. "Do U.S. Anglers Care about Harmful Algal Blooms? A Discrete Choice Experiment of Lake Erie Recreational Anglers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 868-888.
    19. Junhong Chen & Yanjun Kong & Yadong Mei, 2022. "Riverine Health Assessment Using Coordinated Development Degree Model Based on Natural and Social Functions in the Lhasa River, China," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    20. Søren B. Olsen & Cathrine U. Jensen & Toke E. Panduro, 2020. "Modelling Strategies for Discontinuous Distance Decay in Willingness to Pay for Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(2), pages 351-386, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1463-:d:1033550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.