IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16157-d1284510.html
   My bibliography  Save this article

Simulation of the Working Volume Reduction through the Bioconversion Model (BioModel) and Its Validation Using Biogas Plant Data for the Prediction of the Optimal Reactor Cleaning Period

Author

Listed:
  • Maria-Athina Tsitsimpikou

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

  • Sotirios D. Kalamaras

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

  • Antonios A. Lithourgidis

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

  • Anastasios Mitsopoulos

    (Biogas Lagada S.A., Biogas Plant, Organic Waste Treatment & Electricity Generation, Plot 677 Kolchikou, GR 57200 Kolchiko Lagada, Greece)

  • Lars Ellegaard

    (Burmeister & Wain Scandinavian Contractor, Gydevang 35, DK 3450 Allerød, Denmark)

  • Irini Angelidaki

    (Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK 2800 Kgs Lyngby, Denmark)

  • Thomas A. Kotsopoulos

    (Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

Abstract

The present study focuses on the working volume reduction of anaerobic reactors in biogas plants, which is caused by inorganic material accumulation and inadequate mixing and affects methane production and plant profitability. Precipitation phenomena lead to periodic reactor cleaning processes, which complicate the operation of the plant and increase its operating costs. For this purpose, the bioconversion model (BioModel) was utilized by modifying its conditions to accurately simulate the reduction of the working volume of a biogas plant facing precipitation problems for a study period of 150 days. The modified BioModel exhibited notable results in the prediction of methane production, with an average deviation of 1.97% from the plant’s data. After validation, based on the model results, an equation was set up to predict the optimal reactor cleaning period. Incidentally, the optimal cleaning time was calculated at 5.1 years, which is very close to the period during which the cleaning of the reactors of the studied biogas plant took place (5.5 years). The findings of this research showed that the modified BioModel, along with the developed equation, can be effectively used as a tool for the prediction of the optimal reactor cleaning period.

Suggested Citation

  • Maria-Athina Tsitsimpikou & Sotirios D. Kalamaras & Antonios A. Lithourgidis & Anastasios Mitsopoulos & Lars Ellegaard & Irini Angelidaki & Thomas A. Kotsopoulos, 2023. "Simulation of the Working Volume Reduction through the Bioconversion Model (BioModel) and Its Validation Using Biogas Plant Data for the Prediction of the Optimal Reactor Cleaning Period," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16157-:d:1284510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    2. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    3. Lovato, Giovanna & Kovalovszki, Adam & Alvarado-Morales, Merlin & Arjuna Jéglot, Arnaud Tristan & Rodrigues, José Alberto Domingues & Angelidaki, Irini, 2021. "Modelling bioaugmentation: Engineering intervention in anaerobic digestion," Renewable Energy, Elsevier, vol. 175(C), pages 1080-1087.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    2. Kegl, Tina, 2024. "Anaerobic digestion BioModel upgraded by various inhibition types," Renewable Energy, Elsevier, vol. 226(C).
    3. Przemysław Seruga & Małgorzata Krzywonos & Emilia den Boer & Łukasz Niedźwiecki & Agnieszka Urbanowska & Halina Pawlak-Kruczek, 2022. "Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    4. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Tsapekos, Panagiotis & Lovato, Giovanna & Domingues Rodrigues, José Alberto & Alvarado-Morales, Merlin, 2024. "Amendments to model frameworks to optimize the anaerobic digestion and support the green transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16157-:d:1284510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.