IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16079-d1282824.html
   My bibliography  Save this article

A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China

Author

Listed:
  • Zhihui Deng

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300309, China)

  • Qingshan Ma

    (Nanjing Center, China Geological Survey, Nanjing 210016, China)

  • Jia Zhang

    (School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China)

  • Qingda Feng

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300309, China)

  • Zhaoxuan Niu

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300309, China)

  • Guilin Zhu

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300309, China)

  • Xianpeng Jin

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300309, China)

  • Meijing Chen

    (Hebei Provincial Academy of Water Resources, Shijiazhuang 050011, China)

  • Honghan Chen

    (School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

To address the issue of seasonal water resource shortages in Nanchang City, a multi-system coupling socio-hydrology simulation method was proposed. This approach involves dynamically integrating a centralized socio-economic model with a distributed surface water groundwater numerical model to explore the intricate relationships between the socio-economic system, the surface water–groundwater integrated system, and the outcomes related to seasonal water resource shortages. Taking Nanchang City as an example, this study conducted research on the water resource supply and demand balance, as well as the groundwater emergency supply, using the multi-system coupling model. Three scenarios were established: status quo, developing, and water-saving. The results show that with the increasing total water demand of social and economic development, the severity of the water resource shortage will be most pronounced in 2030. The minimum water resources supply and demand ratios for the status quo, developing, and water-saving scenarios are projected to be 0.68, 0.52, and 0.77, respectively. To meet residents’ water needs during drought conditions, emergency groundwater supply efforts are investigated. According to the simulation results, groundwater emergency supply would increase the total population by 24.0 thousand, 49.4 thousand, and 11.2 thousand people, respectively, in the status quo, developing, and water-saving scenarios. In the water-saving scenario, the Youkou and Xiebu water sources can serve as suitable emergency water sources. In the status quo scenario, the Youkou water source is the most viable emergency water source. However, in the developing scenario, relying solely on any single water source for emergency supply could have an irreversible impact on the aquifer. Therefore, considering the simultaneous use of multiple water sources is recommended, as it can fulfill water demands while ensuring the sustainable utilization of groundwater resources.

Suggested Citation

  • Zhihui Deng & Qingshan Ma & Jia Zhang & Qingda Feng & Zhaoxuan Niu & Guilin Zhu & Xianpeng Jin & Meijing Chen & Honghan Chen, 2023. "A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16079-:d:1282824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongguo Shao & Xudong Li & Wenquan Gu, 2015. "A Method for Temporary Water Scarcity Analysis in Humid Region Under Droughts Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3823-3839, August.
    2. Nasser Shahsavari-Pour & Sadegh Bahador & Azim Heydari & Afef Fekih, 2023. "Water Shortage Simulation Using a System Dynamics Approach: A Case Study of the Rafsanjan City," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    3. Peiyue Li & Hui Qian, 2018. "Water resources research to support a sustainable China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 327-336, May.
    4. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiying Zhang & Panpan Xu & Hui Qian, 2019. "Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    2. Chunci Chen & Guizhen He & Mingzhao Yu, 2023. "Sustainable Watershed Protection from the Public Perspective, China," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    3. Yutong Tian & Chunhui Li & Yujun Yi & Xuan Wang & Anping Shu, 2020. "Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    4. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    5. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    6. Yang Liu & Lijuan Li, 2023. "Multiple Evaluations of the Spatial and Temporal Characteristics of Surface Water Quality in the Typical Area of the Yangtze River Delta of China Using the Water Quality Index and Multivariate Statist," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    7. Yi Ding & Xia Li & Di Wang & Jianming Xu & Yang Yu, 2023. "Study on Spatial and Temporal Differences of Water Resource Sustainable Development and Its Influencing Factors in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    8. Hesham K. Fazel & Sayeda M. Abdo & Atiah Althaqafi & Saad H. Eldosari & Bao-Ku Zhu & Hosam M. Safaa, 2022. "View of Saudi Arabia Strategy for Water Resources Management at Bishah, Aseer Southern Region Water Assessment," Sustainability, MDPI, vol. 14(7), pages 1-12, April.
    9. Zhe Cheng & Yuntong Zhao & Tao Song & Le Cheng & Wenbin Wang, 2023. "White Elephant or Golden Goose? An Assessment of Middle Route of the South-to-North Water Diversion Project from the Perspective of Regional Water Use Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 819-834, January.
    10. Chinanu O. Unigwe & Johnbosco C. Egbueri, 2023. "Drinking water quality assessment based on statistical analysis and three water quality indices (MWQI, IWQI and EWQI): a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 686-707, January.
    11. Mengtian Lu & Siyu Wang & Xiaoying Wang & Weihong Liao & Chao Wang & Xiaohui Lei & Hao Wang, 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China," IJERPH, MDPI, vol. 19(6), pages 1-21, March.
    12. Yizhen Jia & Han Wang, 2023. "Study on Water Resource Carrying Capacity of Zhengzhou City Based on DPSIR Model," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
    13. Shaojian Chen & Yuanyuan Cao & Jun Li, 2021. "The Effect of Water Rights Trading Policy on Water Resource Utilization Efficiency: Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    14. Ammar Ahmed Musa, 2021. "Goal programming model for optimal water allocation of limited resources under increasing demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5956-5984, April.
    15. Vahab Amiri & Nassim Sohrabi & Peiyue Li & Saurabh Shukla, 2023. "Estimation of hydraulic conductivity and porosity of a heterogeneous porous aquifer by combining transition probability geostatistical simulation, geophysical survey, and pumping test data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7713-7736, August.
    16. Nan Lu & Jiwei Zhu & Hui Chi & Bing Wang & Lu Chen, 2021. "Progress Assessment and Spatial Heterogeneity Analysis of Water Conservancy Modernization Construction in China," Sustainability, MDPI, vol. 13(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16079-:d:1282824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.