IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15667-d1274998.html
   My bibliography  Save this article

An Assessment of the Impact of Climate Change on Asphalt Binder Selection in East China Based on the ARIMA Model

Author

Listed:
  • Jiajia Sheng

    (National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)

  • Yinghao Miao

    (National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)

  • Linbing Wang

    (School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA)

Abstract

Temperature is a key factor considered in the selection of asphalt binders for asphalt pavement construction. Currently, the asphalt binders used in some regions’ asphalt pavements are no longer suitable for anticipated climate conditions. The reasonable selection of asphalt binder is an important measure for asphalt pavement to adapt to climate change. This paper focuses on the potential impact of climate change on asphalt binder selection in East China in the future. This study is based on the performance grade (PG) system with SUPERPAVE specifications. It involved collecting meteorological data from 109 meteorological stations in East China from 1960 to 2019 and used the ARIMA prediction model to calculate the maximum and minimum design temperatures for road surfaces over the next 20 years. Based on the forecasted road surface temperature data, the impact of climate change on the choice of asphalt binder in East China was discussed. The research findings indicate that, validated by historical data, using the ARIMA model for future temperature prediction has proven reliability. There are some differences in different regions regarding the change in maximum and minimum pavement design temperatures. In 2019 and 2039, there are three and four high temperature grades in East China; these are PG52, PG58, and PG64 and PG52, PG58, and PG64, PG70 respectively. The dominant high temperature grade in East China will remain PG64, and a total of 23.80% of the regions in East China will experience a one-grade upward shift in high temperature grades. PG-28, PG-22, PG-16, and PG-10 are the four low temperature grades distributed in East China in both 2019 and 2039. Compared with 2019, the proportion of areas with grade PG-16 will increase from 33.86% to 34.89%, and the dominant low temperature grade in East China will remain PG-10 in 2039. In the next 20 years, low-temperature cracking issues related to asphalt pavement in some areas of East China will intensify, but the primary challenge will still be problems caused by high temperatures.

Suggested Citation

  • Jiajia Sheng & Yinghao Miao & Linbing Wang, 2023. "An Assessment of the Impact of Climate Change on Asphalt Binder Selection in East China Based on the ARIMA Model," Sustainability, MDPI, vol. 15(21), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15667-:d:1274998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rattanachot, Wit & Wang, Yuhong & Chong, Dan & Suwansawas, Suchatvee, 2015. "Adaptation strategies of transport infrastructures to global climate change," Transport Policy, Elsevier, vol. 41(C), pages 159-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Huapu Lu & Mingyu Chen & Jianyu Wang & Ying Zhang, 2020. "Macro Perspective Research on Transportation Safety: An Empirical Analysis of Network Characteristics and Vulnerability," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    2. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    3. Espinet, Xavier & Schweikert, Amy & van den Heever, Nicola & Chinowsky, Paul, 2016. "Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico," Transport Policy, Elsevier, vol. 50(C), pages 78-86.
    4. Dunn, Sarah & Wilkinson, Sean M., 2016. "Increasing the resilience of air traffic networks using a network graph theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 39-50.
    5. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    6. Muhammad Muhitur Rahman & Runa Akter & Jaber Bin Abdul Bari & Md Arif Hasan & Mohammad Shahedur Rahman & Syed Abu Shoaib & Ziad Nayef Shatnawi & Ammar Fayez Alshayeb & Faisal Ibrahim Shalabi & Aminur , 2022. "Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    7. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    8. Katarzyna Kocur-Bera & Jacek Rapiński & Monika Siejka & Przemysław Leń & Anna Małek, 2023. "Potential of an Area in Terms of Pro-Climate Solutions in a Land Consolidation Project," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    9. Wen, Qi & Qiang, Maoshan & Xia, Bingqing & An, Nan, 2019. "Discovering regulatory concerns on bridge management: An author-topic model based approach," Transport Policy, Elsevier, vol. 75(C), pages 161-170.
    10. Robert Guzik & Arkadiusz Kołoś & Jakub Taczanowski & Łukasz Fiedeń & Krzysztof Gwosdz & Katarzyna Hetmańczyk & Jakub Łodziński, 2021. "The Second Generation Electromobility in Polish Urban Public Transport: The Factors and Mechanisms of Spatial Development," Energies, MDPI, vol. 14(22), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15667-:d:1274998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.